DFG Research Unit, Project A2: Magnetic fields in spiral galaxies Part I: Disks David Mulcahy & Rainer Beck (MPIfR)

Fundamental questions on galactic magnetic fields

- When and how were the first fields generated ?
- Did significant fields exist before galaxies formed ?
- How and how fast were fields amplified in galaxies ?
- Did fields affect the evolution of galaxies ?
- Do galaxies magnetize the intergalactic medium?

Magnetic field generation and amplification

Stage 1: Field seeding

Primordial, Biermann battery, Weibel instability; ejection by supernovae, stellar winds or jets

Stage 2: Field amplification

MRI, compressing flows, shearing flows, turbulent flows, small-scale (turbulent) dynamo

Stage 3: Coherent field ordering Large-scale (mean-field) dynamo

"Primordial" models for galactic fields

Sofue 1990

Generation of large-scale fields (bisymmetric or dipolar), hard to maintain

Dynamic MHD model of supernovainduced turbulence in the ISM

de Avillez & Breitschwerdt 2005

Generation of turbulent and anisotropic fields by compression and shear

Magnetic field strength

Mean-field (large-scale) dynamo models

- Generation of large-scale coherent fields (modes)
- Flat objects (e.g. galaxy disks):
 Quadrupolar fields of symmetric (even) parity
- Spherical objects (e.g. galaxy halos): *Dipolar* fields of antisymmetric (odd) parity

Regular (dynamo) field

Ordered, but incoherent field

Polarization : Faraday rotation : strong high strong low

Fletcher 2004

Faraday rotation

Faraday RM of extragalactic sources behind spiral galaxies

Stepanov et al. 2008

Bisymmetric regular field

Turbulent field

Sum

Recognition of large-scale field structures needs \geq 10 RMs from background sources

Magnetic field amplification by galactic dynamos

Predictions of dynamo models

- Strong turbulent magnetic fields at z < 10
 - → Unpolarized synchrotron emission from starburst galaxies can be observed at z < 10</p>

Arshakian et al. 2009

SKA

- Strong regular fields at z < 3
 - \rightarrow Polarized radio emission and Faraday rotation from normal and dwarf galaxies can be observed at z < 3
- Large-scale coherent regular magnetic fields in dwarf or Milky Way-type galaxies at z < 1
 → Large-scale patterns of Faraday rotation can be observed at z < 1
- Large galaxies (>15 kpc) may not yet have generated fully coherent fields

Synchrotron polarization

Beck & Hoernes 1996

NGC 6946: Total and polarized intensity at 6cm

NGC 6946

6cm VLA+Effelsberg Polarized intensity + B-vectors (Beck & Hoernes 1996)

"Magnetic arms":

Ordered fields concentrated in *interarm* regions !

Origin of "magnetic arms"

- High mode of the mean-field dynamo? (Rohde et al. 1999)
- Slow MHD waves? (Lou & Fan 1998, Lou & Bai 2006)
- Drifting of magnetic arms away from the gas arms? (Otmianowska-Mazur et al.)

NGC 6946

RM 3/6cm VLA+Effelsberg (Beck 2007)

> Faraday RM pattern: Superposition of two dynamo modes

NGC 6946 WSRT HI + optical (Boomsma et al. 2006)

All magnetic ?

Faraday depolarization

Beck 2007

NGC 6946 Polarized intensity at 6cm and 20.5cm

M31: The classical dynamo case

Copyright: MPIfR Bonn (R.Beck, E.M.Berkhuijsen & P.Hoernes)

M31: The dynamo is working

M31 RM 6/11cm + Magnetic Field (Effelsberg)

Copyright: MPIfR. Bonn (B.Beek, E.M.Berkhuijsen & P.Hoernes)

Berkhuijsen et al. 2003

Fletcher et al. 2004

The spiral field of M31 is coherent and axisymmetric (small spiral pitch angle)

Deep Effelsberg polarization survey of M31 at 6cm

One of the deepest images ever made in Effelsberg

Gießübel et al., in prep.

Classical dynamo: axisymmetric field Ordered fields extend out to > 25 kpc

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2010)

Ordered spiral fields, mostly parallel to the optical spiral arms

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2010)

M 51

Field lines parallel to the inner spiral arms:

> density-wave compression or shear

M51 VLA+Effelsberg RM 3/6cm (Fletcher et al. 2010)

> Complicated RM pattern: Two weak dynamo modes (m=0+2), plus strong anisotropic fields

Large-scale magnetic fields in M51

Fletcher et al. 2010

Disk: ASS (m=0) + m=2 modes

Upper layer: BSS (m=1) mode

Field reversal between northern disk to inner halo – similar to that found for the Milky Way (Sun et al. 2008)

LMC RM 18-20cm ATCA (Gaensler et al. 2005)

Faraday RMs from background sources: Axisymmetric dynamo field

NGC 4535

6cm Effelsberg Polarized intensity + B-vectors (Wezgowiecz et al. 2007)

Field compressed by ram pressure

Stephan's Quintet 6cm VLA

Total intensity + B-vectors (Soida et al., in prep)

> Ordered intergalactic fields

Low-frequency radio observations

- Frequency of synchrotron emission: υ ~ E² B
- \rightarrow Observing at low frequencies traces cosmic-ray electrons in weak magnetic fields
- Lifetime of electrons due to synchrotron loss:
 t ~ v^{-0.5} B^{-1.5}
- \rightarrow Observing at low frequencies traces old electrons
- Faraday rotation: Δψ ~ υ⁻² RM
 → Observing at low frequencies allows to measure small rotation measures

Propagation lengths of cosmic-ray electrons

Propagation of outflows with Alfvén speed in halos (10⁻³ cm⁻³):
 V ≈ 70 km/s · B (µG)

- B > 3.25 (z+1)² µG: Synchrotron loss dominates
 Propagation length of electrons emitting at 50 MHz: L≈ 330 kpc / (B (µG))^{0.5}
- B < 3.25 (z+1)² μG: Inverse Compton loss dominates Propagation length of electrons emitting at 50 MHz: L ≈ 30 kpc (B (μG))^{1.5}
- Maximum propagation length: ≈ 200 kpc

Regular fields: propagation speed can be higher !

Faraday rotation with LOFAR

- LOFAR can in measure very low Faraday rotation measures of polarized background sources and hence detect very weak magnetic fields:
- Galaxy halos, clusters, relics:
 n_e=10⁻³ cm⁻³, B_{II} =1 µG, L=1 kpc: RM~1 rad m⁻²
- Intergalactic magnetic fields: n_e=10⁻⁵ cm⁻³, B_{||} =0.1 µG, L=100 kpc: RM~0.1 rad m⁻²

Faraday rotation angles

- $[RM] = 10 \qquad 1 \qquad 0.1 \text{ rad m}^2$ 1400 MHz $\Delta \chi = 30^{\circ} 3^{\circ} 0.3^{\circ}$ 200 MHz $\Delta \chi = 1300^{\circ} 130^{\circ} 13^{\circ}$ 120 MHz $\Delta \chi = 3600^{\circ} 360^{\circ} 36^{\circ}$ Detection of ~ 0.1 rad m⁻² is challenging but possible:
- Ionospheric Faraday rotation has to be accurately corrected (let's hope for a low solar activity cycle ...)
- Foreground RM components have to be separated with help of RM Synthesis

Maximum polarization due to Faraday dispersion

Arshakian & Beck 2010

LOFAR: Extent of galactic halos: First results !

G. Heald et al.

- 6h observatio
- 10 MHz bandv
- Calibration on
- Robust weight

Summary: Key problems of galactic magnetic fields

- Physics of the galactic dynamo
- Origin of the "magnetic arms"
- Origin of anisotropic fields
- Origin of X-shaped halo fields
- Origin and velocity of magnetized outflows
- Origin of the large-scale reversal(s) in the Milky Way