VLBI analysis with c5++ status quo and outlook

Hobiger T.¹, Sekido M.¹, Otsubo T.², Gotoh T.¹, Kubooka T.¹, Takiguchi H.¹ and Takeuchi H.³

(1) NICT, Japan(2) Hitotsubashi Univ., Japan(3) JAXA, Japan

Content

- c5++ and VLBI
 - Multi-technique space geodetic analysis software
 - -VLBI analysis and some features
 - Automated ambiguity resolution
 - Real-time UT1 estimation
 - Software validation
- Upcoming release
- Summary and outlook

c5++ a multi-technique space geodetic analysis software

Some features and results

Automated processing of UT1 sessions

Automated ambiguity resolution and UT1 estimation with c5++

- Use X and S-band as independent observations which share a common clock + an offset between the bands
- 2 Estimate only clock
- ③ Look at residuals and shift ambiguities according to X/S band spacing
- ④ If none of the residuals exceed the corresponding ambiguity spacing stop iteration
- (5) Compute ionosphere correction
- 6 Compute UT1

Example: Wettzell-Tsukuba, 2006/11/18

Experiment K06322 - iteration.1

Single Baseline UT1 estimation

- In accordance to IERS 2003 conventions
- Optional SNR filter to reject observation with low SNR
- Estimated parameters:
 - Quadratic clock (3 unknown)
 - Troposphere (2 unknown)
 - UT1 offset (1 unknown)
- LSQ/Gauss-Markov Model
- 3σ outlier test and re-run possible
- Output results in IERS format

Results from automated re-processing

- using correlator output
- using station logs
- Processing all INT2 sessions between Jan. 2006 and May 2010

INT2

- No human interaction
- Compare against CALC/SOLVE based results computed by GSI

Software validation

 We joined the IVS"Comparison Campaign of VLBI Data Analysis Software"

Many thanks to <u>L. Plank</u> for feedback during this evaluation

Next release and further development

- Implements IERS 2010 conventions
- Prepared for new VLBI data format
- Allows multi-baseline ambiguity resolution
- Input/output of SINEX files
- Implements a more sophisticated outlier detection algorithm
- Kalman filter for time-transfer by VLBI (i.e. NICTs main research target starting from April 2011)
- Combination of space geodetic techniques on the observation level
- Space craft navigation of deep-space missions (JAXA)

Summary

- Benefit from large development team
- modules provided by experts in the corresponding fields
- Usable across different space geodetic technique →consistency
- Only a few additional VLBI-only modules required
- The VLBI module of c5++ has been applied to fully automated estimation of UT1 (being used by GSI, results submitted to the IERS for evaluation)
- Software validated within the IVS comparison campaign
- Automatically processed UT1 results agree well with manually analyzed CALC/SOLVE estimates

Outlook

- Make use of parallel architectures to speed up computation intensive parts (mainly orbit module, less affecting VLBI)
- Following the goal of GGOS, we'd like to provide a flexible multi-technique space geodetic analysis software
- Support other applications as well
 - Time and frequency transfer by VLBI
 - Space craft tracking

Thank you very much for your attention !

Acknowledgments:

GSI, Japan (data, real-time tests, etc.) Vienna Univ. of Techn. (software validation) IVS (data) IERS

Further reading:

Hobiger T., Otsubo T., Sekido M., Gotoh T., Kubooka T. Takiguchi H., Fully automated VLBI analysis with c5++ for ultra-rapid determination of UT1, submitted to Earth, Planets, Space, 2010.

