Outline

HIRLAM 000 Raytrace approach

Moritz approach 0000000000 Conclusions

Application of ray-tracing through the high resolution numerical weather model HIRLAM for the analysis of European VLBI data

Susana Garcia-Espada(1,2) Rüdiger Haas(2) Francisco Colomer(1)

(1) Instituto Geográfico National, Spain(2) Chalmers University of Technology, Onsala Space Observatory, Sweden

30th March 2011

20th EVGA Meeting - Bonn (Germany)

Outline	Introduction $^{\circ}$	HIRLAM 000	Raytrace approach O	Moritz approach 0000000000	Conclusions
Introdu	ction				

- An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are caused by the tropospheric effects due to **neutral atmosphere**
- In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses
- A troposphere correction model based on direct calculation of the slant delay applying raytracing to the **Conformal Theory of Refraction** through the Limited Area numerical weather prediction (NWP) HIRLAM 3D-VAR is developed
 - The advantages of the Conformal Theory of Refraction is that the atmospheric propagation effects are evaluated along the *line of sight* and the known *vacuum elevation angle* is used so no iterative calculations are needed
 - The advantages of HIRLAM model are the high spatial resolution (0.2°×0.2°) and the high temporal resolution in prediction mode (every 3 hours)

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- 3 Raytrace approach
 - Raytrace program

4 Moritz approach

• Application of the Conformal Theory of Refraction

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Moritz approach

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- Baytrace approachRaytrace program
- Moritz approach
 - Application of the Conformal Theory of Refraction

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Moritz approach

Refractivity: curvature and delay

Electrical path length $L(\epsilon, \phi) = \int_{S} n ds$

S: path of the signal G: geometrically shorter path Atmospheric delays can be evaluated along the path of the ray originating from the direction of the ray emission source and passing through the atmosphere to a receiving antenna

Path delay

$$\Delta L = 10^{-6} \int_S N(s) ds$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- 3 Raytrace approach
 - Raytrace program
- Moritz approach
 - Application of the Conformal Theory of Refraction

Moritz approach

Outline Introduction HIRLAM Raytrace approach Moritz approach Conclusions O 000 000 0000000000 0000000000 0000000000 HIRLAM 000 00000000000 0000000000 0000000000 0000000000 High Resolution Local Area Model Model 0000000000 0000000000 0000000000

HIRLAM: High Resolution Numerical Weather Model (NWM)

- Limited Area Model (Europe)
- Synoptic scale (displaying conditions simultaneaously over a broad area)
- Hydrostatic grid point model
- Spatial resolution $0.2^{\circ} \times 0.2^{\circ}$
 - Horizontally: 22 to 5 km
 - Vertically: 16 to 60 levels
- Temporal resolution
 Analysis: 6 hours assimilation cycle (00h, 06h, 12h, 18h)
 Forecast: every 3 hours
- Initial and boundary conditions:
 ECMWF (European Centre for Medium-Range Weather Forecast)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions
		000			
ECMW European C High Resolu	F & HIRLA Centre for Medium ution Local Area	M m-Range Wea Model	ther Forecast &		

	ECMWF	HIRLAM
Spatial resolution	$2.5^{\circ} \times 2.5^{\circ}$	$0.2^{\circ} \times 0.2^{\circ}$
Number of pressure levels	15	31
Temporal resolution in post processing mode	6 hours	6 hours
Temporal resolution in prediction mode	6 hours	3 hours

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- 3 Raytrace approach
 - Raytrace program

4 Moritz approach

Application of the Conformal Theory of Refraction

・ロット 全部 とう キャット

3

Moritz approach

Davis, J.L., T.A.H. Herring and A.E. Niell, The Davis/Herring/Niell Raytrace program, 1987-1989

HIRLAM input:

- Profiles 6 hours time resolution (00h, 06h, 12h, 18h)
- 22 km horizontal resolution
- 40 vertical levels refine to approx. 1000 layers
- Atmosphere height extrapolated to 136 km
- Grid model: interpolation between the 4 nearest points around the station

Raytrace program:

• Pressure, Temperature and Relative Humidity profiles at a starting height above sea level for each site and time epoch

= 900

- Elevation angle of each observation
- No Azimuth angle dependence
- Calculate 'Path Delay' through the homogeneous atmosphere

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- Raytrace approach
 Raytrace program

4 Moritz approach

Application of the Conformal Theory of Refraction

Moritz approach

Outline Introduction HIRLAM Raytrace approach Moritz approach Conclusions 0 000 0 0 0 0 0 0

Application of the Conformal Theory of Refraction (I)

Derived by Moritz (1967) and developed by Brunner and Angus-Leppan (1976)

- Solution of Eikonal equation has been included in the equations
- Atmospheric propagation effects are evaluated along the **known chord line** and not along the unknown wave path
- Vacuum elevation angle is used so no iterative calculations are needed

= 900

$$\Delta S = 10^{-6} \int_0^S N dX - \frac{1}{2} 10^{-12} \int_0^S \left[\left(\int_0^S \frac{dN}{dY} \varepsilon d\varepsilon \right)^2 + \left(\int_0^S \frac{dN}{dZ} \varepsilon d\varepsilon \right)^2 \right] \frac{dX}{X^2}$$

where ε is a integration variable only

If we neglect the small effect of curvature due to lateral refraction caused by $\frac{dN}{dY} \approx 0$, and $\frac{dN}{dZ} = \cos\beta(\frac{dN}{dh})$ where β is the vacuum elevation angle.

Then practical approximation:

$$\Delta S = 10^{-6} \int_0^S N dX - \frac{\cos^2 \beta}{2} 10^{-12} \int_0^S (\int_0^S (\frac{dN}{dh}) \varepsilon d\varepsilon)^2 \frac{dX}{X^2}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

 Outline
 Introduction
 HIRLAM
 Raytrace approach
 Moritz approach
 Conclusions

 Moritz approach (I)

 HIRLAM input

Interpolation in time

• Profiles 6 hours time resolution (00h, 06h, 12h, 18h): interpolation in time for each scan

Interpolation in the horizontal

- Grid model: 22 km horizontal resolution
- Interpolation between the 4 nearest points around the station and each ray point in the atmosphere (check if it is in the same vertical profile)

Interpolation in the vertical and refinement

- 40 vertical levels refine to approx. 1000 layers (step size depend on atmosphere height)
- Atmosphere height extrapolated to 136 km
- Station height in the HIRLAM vertical profile (interpolation/extrapolation)
- Heights calculated over WG84 ellipsoid and undulations from potential coefficient model egm96

Outline	Introduction O	HIRLAM 000	Raytrace approach O	Moritz approach Conclusions
~		1. A		

One example from the side and the top

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Not in scale! Courtesy: Carolina ZG - 3dmax 2010

- Elevation angle of each observation
- Azimuth angle dependence
- Neglect the small effect of curvature due to lateral refraction caused by $\frac{dN}{dY}\approx 0$
- Starting integration at station height
- Size and number of integration steps along the chord line depend on vacuum elevation angle β and the current height of the ray point in the atmosphere (vertical refinement steps). Need to find a compromise with execution time (approx. 250 integration steps)
- Recalculate β at each ray point
- Calculate 'Path Delay' through the **3D inhomogeneous atmosphere** through the chord line

Forecast and analysis HIRLAM profiles are combinated Differences between HIRLAM comparison are due to improvements in interpolation (distance calculation) Mean = 0.83 mmStandard deviation of the mean = 0.02 mm

Difference in calculated slant delays

Comparison between Raytrace & Moritz Slant delays (I) Homogeneous vs Inhomogeneous atmosphere

< ロ > < 同 > < 回 > < 回 >

Maximum difference = 24.70 cm Minimum difference = 5.58 cm

Difference in calculated slant delays

Comparison between Raytrace & Moritz Slant delays (II) Homogeneous vs Inhomogeneous atmosphere

Station	# obs	Max diff (m)	Min diff (m)	Station	# obs	Max diff (m)	Min diff (m)
	EU	R075		EUR076			
EFLSBERG	234	0,25	0,06	SVETLOE	261	0,27	0,06
MEDICINA	263	0,37	0,05	WETTZELL	199	0,42	0,06
ONSALA60	214	0,33	0,05	NYALES20	182	0,35	0,05
NYALES20	190	0,35	0,05	ONSALA60	195	0,36	0,06
WETTZELL	225	0,37	0,06	MEDICINA	270	12,61	-16,09
NOTO	164	0,29	-0,18				
	EU	R077		EUR078			
WETTZELL	221	0,37	0,06	SVETLOE	250	0,23	0,05
NYALES20	178	0,31	0,05	WETTZELL	223	0,34	0,06
ONSALA60	208	0,35	0,05	NYALES20	193	0,33	0,05
MEDICINA	248	0,39	0,05	ONSALA60	160	0,31	0,05
	EU	R079		MEDICINA	272	0,4	0,05
MEDICINA	341	0,33	0,05	EFLSBERG	307	0,25	0,06
SVETLOE	348	0,27	-2,84				
WETTZELL	318	0,35	0,05	Table showing maximum and minimum differences			
ZELENCHK	102	0,23	0,05	between Raytrace & Moritz Slant delays			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Effelsberg 25th March 2005 12:00

・ロト (四) (日) (日) (日) (日) (日)

Effelsberg 25th March 2005 12:00

Outline	Introduction	HIRLAM	Raytrace approach	Moritz approach	Conclusions

• Delay of a signal propagating through the atmosphere

2 HIRLAM

- HIRLAM (High Resolution Limited Area Model)
- ECMWF vs HIRLAM
- HIRLAM Topography
- 3 Raytrace approach
 - Raytrace program

4 Moritz approach

• Application of the Conformal Theory of Refraction

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

3

Moritz approach

Outline	Introduction 0	HIRLAM 000	Raytrace approach O	Moritz approach 0000000000	Conclusions			
Conclusions and Future work								

Conclusions

- We have calculated slant delays using homogeneous and inhomogeneous atmosphere
- Raytrace approach simplifies to an homogeneous atmosphere
- Moritz approach includes the effect of an inhomogeneous atmosphere in the delay
- Differences between Raytrace and Moritz approach are the inhomogeneous atmosphere contributions
- Comparison of ZWDs and slant delays at elevation 90° using Moritz approach is in the order of 1 mm level due to improvements in the interpolation
- We calculate more precise and accurate slant delays with Moritz 3D approach

Future work

- Comparison of Moritz slant delays raytrace through HIRLAM to other NWM e.g. ECMWF and other approaches e.g. KARAT
- We will analyze VLBI European data using the calculated slant delays as apriori

Thank you! Questions?

・ロト ・四ト ・ヨト ・ヨト

æ

HIRLAM Surface Pressure vs Pressure@Stations

<ロト < 聞 > < 注 > < 注 >

æ