

# Sensitivity evaluation of two VLBI2010 candidate feeds

Christopher Beaudoin, Bruce Whittier MIT Haystack Observatory





# Outline



- Patriot 12m Considerations
- Eleven Feed Developments
  - Construction
  - Efficiency Expectations
  - System Temperature
- Caltech Quadridge Feed Horn
  - Construction Status and Plans
  - Efficiency Expectations
  - Ambient Noise Pickup







# Patriot 12m Considerations

- Dual-shaped reflector design
- Attempt to constrain Dewar/cryostat size to the specified shadow angle to minimize blockage/scattering losses
- Feed itself will satisfy constraint but required cryogenic components will not
- Shadow is actually frequency dependent







### **Eleven Cryostat Contruction**



- Cryostat Dimensions
  - Feed Recess: 22.2 mm
  - Outer Wall Diameter: 279 mm
  - Inner Wall Diameter: 254 mm
  - Outer Wall Length: 420 mm
  - 70K Shield Thickness: 3.2mm
- Eleven Feed Diameter: 204 mm

SMA/Microwave Connections



#### Vacuum Window





MIT Vacuum Valve Refrigerator HAYSTACK OBSERVATORY







#### **Eleven Front-End Contruction**















# Quadridge Feed Horn (QRFH)

- California Institute of Technology Design
  - Sandy Weinreb
  - Ahmed Akigray
  - Bill Imbriale
- 2-14 GHz Unbalanced Design
  - One single-ended port per polarization
- Designed for Patriot 12m Antenna Shaped Optics
  - Adaptable to other antenna optics
- Overcomes limitations of commercial quadridge designs
- Haystack working to confirm QRFH performance expectations on GV12



MIT HAYSTACK OBSERVATORY





# A Vision for Geodetic VLBI

### **Construction Status and Plans**

- Recently Completed Components
  - Base Plate
  - 70K Radiation Shield
  - Rough machining of outer can
- Short term work
  - Final machining of outer can
    - o-ring grooves
    - Vacuum window fasteners
    - Welding gussets for base ring
  - Weld base ring
  - Fabricate 20,70K stations
  - Assemble vacuum window
- Installation of Refrigerator
- Installation of Microwave Hardware
  - QRFH/IR Blanket
  - CRY01-12 LNAs
- Front-end Y-factor Measurements
- Installation on GV12
  - Measure Sensitivity!













## **Computed Aperture Efficiency**





## **Computed Noise Temperature**



Notse Temp K



# Conclusion and Future Work

- Best-Case Eleven performance on the 12m
  - 60-70% Aperture Efficiency (frequency dependent)
  - 20K Noise Temperature (slight higher >4 GHz)
  - Strut/feed scattering and surface errors can influence performance (not considered here)
- QRFH has comparable best-case aperture efficiency
  - Note above on scattering and surface errors also applies here.
  - Noise temperature expectation should be calculated to make fair A/T comparison
- Haystack is working to evaluate VLBI2010 candidate feeds
  - Latest Eleven front-end not consistent with previous 20K noise performance
    - Investigation is needed possibly reconfiguration of components
  - QRFH front-end construction underway
    - Conduct Y factor measurements and compare to expectation
    - Measure 12m SEFD





