Receivers & Array Workshop 2010 September 20th, 2010

Recent ETHZ-YEBES Developments in Low-Noise pHEMTs for Cryogenic Amplifiers

Andreas R. Alt, Colombo R. Bolognesi

Millimeter-Wave Electronics Group (MWE) ETH-Zürich, Gloriastrasse 35, Zürich 8092, Switzerland http://www.mwe.ee.ethz.ch/

Outline

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Introducing MWE Group

- Established in 2006
- Members (9 Researchers + 1 Prof)
 - 7 Ph.D. Candidates
 - 2 Postdocs
 - 1 Measurement Engineer + 1 Process Engineer
- Research Areas
 - HEMTs (InP, Group III-N)
 - InP/GaAsSb DHBTs
 - MOCVD (InP, GaInP, GaAsSb)
 - Circuit Design + Characterization

Introducing ETH / FIRST Cleanroom

FIRST - Frontiers in Research Space and Time

- In Operation Since 2002
- 400 m² of Class 10-10'000
- State-of-the-Art Equipment
- Managed by 11 Professors
- Run by 9 perm. Employees

Introducing ETH / FIRST Cleanroom Equipment

- 3 MBEs / MOVPE
- 2 X-Ray / PL Mapper
- 2 Zeiss SEMs / AFM
- 2 Raith 30kV EBLs
- PECVD / RIEs / ICP / LPCVD / ALD
- 3 EB-Evaporation / 1 Sputter System
- Rapid Thermal Annealer
- CV-Profiler / Hall Effect System
- Ellipsometer / Alphastep
- MA6 / MJB3 / DUV Aligners
- 3 Optical Microscopes
- Wet Bench Area / Litho Area
- ...

Introducing ETH / MWE "Measurement Lab"

Measurement Tools & Capabilities

- Vector Network Analyzers (0.045 110 GHz + 140 220 GHz)
- Power Analysis (0.045–110 GHz)
- Spectrum Measurements up to 90 GHz
- Antenna Measurements
- Noise Figure Measurements up to 75 GHz
- Noise Parameters up to 20 GHz
 - Up to 50 GHz by End of 2010
 - Multiharmonic Load-Source Pull by End of 2010

Introducing ETH / MWE "Cryo Lab"

- On-Wafer Cryo-System
 - > Open-Cycle IHe Cryostat
 - Vacuum Level: <10e-6 Torr</p>
 - > Temperature Range: 5 K to 400 K (±0.1K)
 - > PID Temperature Controller
 - ➤ Temperature Sensors: Si Diode (Chuck) and Pt Thermometer (Probe Arm)
- > Feedthrough:
 - > RF Cables (K- and 2.4mm-connector)
 - DC Wires/Cables (10 pin)

Probes

- Cryogenic RF Probes (K- and 2.4mm connector)
- Multi-Contact-Wedge Probe (9 pin)

Introducing ETH / MWE "Cryo Lab"

- Cryo Dewar System
 - > Temperature Range: 10 K to 400 K
 - > IN2 shielded IHe Cryostat
- > Feedthrough:
 - 4 RF Cables (SMA-connectors)
 - 2 DC Wires/Cables (16 pin)
- Probes
 - > Any Probe Type/Size Fitting on the Copper Plate (Ø17cm x 10 cm)

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Outline

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

ETH HEMT History

- 1991 Development of 0.25µm ETH AllnAs/GalnAs/InP HEMT
 - Transistor-Process by C. Bergamaschi under Prof. Bächtold
- 1998 First ESA-Project Involving ETH-HEMTs and
 - YEBES for Design & Fabrication of X-Band Amplifier
- ...Transistor Supply for Various Projects
- 2006-2008 Process Transfer from In-House Cleanroom to FIRST
- Currently: ESA Ka-Band Amplifier Project with ETH Devices and

YEBES for Hybrid Amplifier Design & Fabrication (S. Halté)

ETH InP HEMT Work Today

- Evolve "Conventional" AllnAs/GalnAs/InP HEMT Technology
 - Understand & Improve "Conventional" Devices
- InAs Channel Insets Without Antimonide Related Problems
- "Aluminum Free" GaInP/GaInAs pHEMT Concept for Improved [1]:
 - Reliability
 - High-Frequency Power Performance
 - LF-Noise
 - Cryogenic Performance
 - Breakdown Behavior
 - Improved Etch-Selectivity of GaInAs/GaInP (Recess)

[1] A. Mesquida Küsters and K. Heime, "Al-Free InPBased High Electron Mobility Transistors: Design, Fabrication and Performance," Solid-State Electronics, vol. 41, pp. 1159-1170, 1997

"Aluminum free" HEMT Concept

"Aluminum free" HEMT Concept

Goal: Eliminate AllnAs from HEMT-Epi

Sensitive Region, Even when Passivated!

Information Technology and Electrical Engineering (ITET)

"Aluminum free" HEMT Concept

Difficulties to Consider when Replacing AllnAs with GalnP and InP

- Growing Insulating InP-Buffer on InP
- Achieving High Sheet Densities and High Mobilities

while

 Aiming for High Conduction Band Offset

Al-Free InP pHEMTs Motivation:

- AllnAs Can Be Chemically Unstable
 - Traps Present (Residual Oxygen, already in MOCVD Al Source)
 - Device Instabilities/Non-Idealities (e.g. Kink, Light Sensitivity, etc.)
 - Reliability Limiter
- InP Buffer Layer Advantages
 - Al-Free
 - 10x Higher Thermal Conductivity wrt Alloys
- Old Idea: Explored by K. Heime in 1990's
 - $f_T = 150 \text{ GHz}$
 - Claimed to Offer Lower Noise than AllnAs/GalnAs HEMTs
 - Did Not Gain Acceptance

Information Technology and Electrical Engineering (ITET)

Al-Free InP pHEMTs (ETH-Grown) $f_{MAX} > 600 \text{ GHz } (100 \text{ nm})$

Peak
$$f_T$$
 Bias:
 $f_T = f_{MAX} = 250 \text{ GHz}$

Peak f_{MAX} Bias: $V_{DS} = 1.5 \text{ V}$ $f_T = 200 \text{ GHz} / f_{MAX} = 602 \text{ GHz}$

Non-Optimized Layers on InP:Fe $\mu = 8,300 \text{ cm}^2/\text{Vs}$ $N_s < 1 \times 10^{12} \text{ /cm}^2$

The GaInP/GaInAs AI-Free pHEMT on InP:Fe is Very Promising!

Typical Device Fabrication Process

Ohmic Contacts Ge/Au Annealed Contacts: <0.1 Ωmm Device Isolation Phosphoric Acid Based Solutions Organic Acids Gate Recess 30-500nm Ebeam T-Gates + T-Gates SiN_x Passivation Metallization Overlay Metallization Airbridges +Thick Pad-Metal Followed Electroplating

by Thinning to 100µm + Dicing

Information Technology and Electrical Engineering (ITET)

Electron Beam Lithography for Nanometric Gates

Cursor Width = 33.05 nm

1µm

EHT = 2.00 kV Mag = 100.00 K X

WD = 2 mm

Signal A = InLens Pixel Size = 3.7 nm File Name = Zep_1-1_2500rpm__23.tif

Tilt Angle = 0.0°

Andreas Alt

Center for Micro- and Nanoscience

Date :5 Sep 2009

6 Finger Air-Bridge Device

InP pHEMT $(0.1\mu m \times 100\mu m)$

6 Finger Air-Bridge Device

Outline

Swiss Federal Institute of Technology Zurich

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

DC Device Characteristics @ RT

DC Device Characteristics @ RT

DC Device Characteristics @ RT

RF Device Characteristics @ RT

- Bias SweepWithout RemovingPad-Parasitics!
- 0.1μm x 150μm

RF Device Characteristics @ RT

- Bias Sweep
 Without Removing
 Pad-Parasitics!
- 0.1μm x 150μm

DC Device Characteristics @ 15K vs. 300K

DC Device Characteristics @ 15K

DC Device Characteristics @ 15K vs. 300K

RF Device Characteristics @ 15K

- Bias SweepWithout RemovingPad-Parasitics
- 0.1μm x 150μm

RF Device Characteristics @ 15K

- Bias SweepWithout RemovingPad-Parasitics
- 0.1μm x 150μm

RF Device Characteristics @ 15K

- RF Data
 Without Removing
 Pad-Parasitics!
- F_T of 272 GHz @ $0.7V V_{DS}$, $0.2V V_{GS}$ $31mA I_{DS}$, $0.12nA I_{GS}$

RF Device Characteristics @ 15K

- RF Data
 Without Removing
 Pad-Parasitics!
- Typical Low-NoiseBias Point @

 $0.3V V_{DS}, 0.05V V_{GS}$

4.3mA I_{DS}, **0.014nA I_{GS}**

 $F_T = 156 \text{ GHz}$

Information Technology and Electrical Engineering (ITET)

How Judge on Cryo-Noise Performance - Without Building the Amplifier ?

Cryo3 ($4x20\mu m$) vs. ETH ($2x75\mu m$)

(Not Quite Fair 4F vs. 2F!)

Processing Impact on Device Characteristics

A Single Process Step Can Have a Dramatic Impact on Gate Leakage!

(Everything Else Kept the Same)

Processing Impact on Device Characteristics

A Single Process Step Can Have a Dramatic Impact on Gate Leakage!

(Everything Else Kept the Same)

Information Technology and Electrical Engineering (ITET)

Processing Impact on Device Characteristics

In this Experiment the
Processing Change
Solely Influenced the
Gate Leakage which is
a Key Factor for the
Noise Performance!

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Outline

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Result Considerations

- CRYO3 is Considered the Best Cryo-Transistor Ever Measured
- ETH Devices Presented Here are not Yet "Optimal":
 - Source-Drain Distance is 2µm; Better Performance Expected for 1µm
- Noise Characterization Over 16–26 GHz by YEBES
- YEBES Used ETH Devices in the First Stage of their YK22 004
 Amplifier, Comparing Against HRL and NGST Devices

YEBES Amplifier Results @ 300K

Information Technology and Electrical Engineering (ITET)

YEBES Amplifier Results @ 15K

ETHZ-YEBES Measurement Results

- Noise Results Obtained with ETH Devices Almost Reach CRYO3
 - The Average in-Band Noise is Slightly Higher than CRYO3
 - The Minimum Noise is in Some Cases Slightly Better than CRYO3
- Gain is Significantly Higher for ETH Devices
- Very Low Gate Leakage at Cryogenic Temperatures

Outline

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Conclusion

- ITAR Complicates HEMT Procurement Outside US
- ETH Technology as EU Source of High-Performance Devices
 - Radio-Astronomy & Deep Space Network
 - Telecommunications
 - Research Applications
- MWE / ETH Interested in Collaborative Projects
 - Secure/Expand EU Source for Strategic Technology
 - Extend Technological Limits

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MM-Wave Electronics Group

Information Technology and Electrical Engineering (ITET)

