Hybrid CPV-CSP approach
100 % renewables for ASKAP and SKA

Dr. Matthias Vetter
Fraunhofer Institute
for Solar Energy Systems

Workshop - Renewable energy concepts for SKA and its pathfinders
Berlin, 7th of April 2011
Agenda

- High fraction of renewable energies in mini-grids
- Next generation of hybrid PV mini-grids
- Energy management and communication
- Hybrid CPV-CSP approach for ASKAP and SKA
- Discussion points
Mini-grids: Substitution of Diesel generators with renewable energies

Example Brazil

- 21 kWp PV
- 60 kVA Diesel generator
- No storage !!!

→ Only 10 % of annual electricity consumption can be covered by PV

World wide:
Annual new installations of 10 GW Diesel generators !!!

Source R. Rüther
Mini-grids: Substitution of Diesel generators with renewable energies

Life cycle cost analysis – Example Mexico

- 99 households, a rural clinic and a fish factory
- Daily consumption: 2849 kWh
- Peak load: 200 kW
- Variation of PV module prices
Next generation of hybrid PV mini-grids
Next generation of hybrid PV mini-grids

- High efficiency power electronics
- Hybrid battery system (lead acid and lithium) with integrated battery management system
- Energy management system
- Standardized communication infrastructure
- Suitable for isolated mini-grids and grid connected applications
Next generation of hybrid PV mini-grids

125 kVA – 500 kVA
Standardized communication concept

- Superordinate energy management system
- Intelligent components
 - Generators
 - Battery management
 - Loads
- Communication bus
- Standardized “Universal Energy Supply Protocol”
 - Modular, flexible und expandable
CPV off-grid system for water pumping, desalination and irrigation in Egypt

- CPV trackers: 5 x 6 kWp
- CPV inverter: 5 x 6 kW
- Island inverters: 3 x 5 kW
- Flat plate PV with charge controller as backup: 1 kWp
- Submersible Pump: 9 – 15 kW
- Irrigation Pump: 5.5 kW
- Desalination 1.5 kW
- Air conditioning 0.5 kW
- Dump Load 6 kW
- Battery (48 V) 900 Ah (C10)
- 8 – 15 m³/h
Field installation in Egypt
UESP – Universal Energy Supply Protocol

Transfer in CAN in Automation (CiA) specification
→ CiA 454 “energy management systems” as part of the “EnergyBus”

- Standard protocol for communication between components of different manufacturers
- Separation of power- and communication bus (CAN)
- Centralized energy management system in combination with decentralized Intelligence
- High flexibility through plug&play function
- Open protocol as a base for manufacturer
- Simply expandable
EnergyBus e.V.

with CANopen specification → CiA 454

- Starting point of EnergyBus e.V.:
 - Interoperability of components of light electric vehicles LEV: Plugs, communication interface, etc.
 - Communication: CANopen specification CiA 454 LEV
 - Significant similarities with stationary PV off-grid and also on-grid (!) applications: batteries, power electronics, loads, user displays, etc.

- Now extended for energy management applications in general
 → New name of CiA 454: „Energy management systems“
EnergyBus system

Diesel generator
DC coupled
EnergyBus system

Diesel generator
AC coupled
EnergyBus system

Demand side management
e.g. with power line communication
Hybrid CPV-CSP power plant – System approach
CPV subsystem: Topology

Option 1

CPV

Lithium

Redox-Flow

CPV

Lithium

Redox-Flow
CPV subsystem: Topology

Option 2

Lithium

Redox-Flow
CPV subsystem: Topology

Option 3

Lithium

Redox-Flow

CPV

CPV
CSP subsystem

Integrated concept of power generation and cooling
- i.e. 1-stage absorption cooling

Various options:
- Principals
- Integration
- Control
Hybrid CPV-CSP power plant – RFI relevant components
Discussion

- Hybrid CPV-CSP approach for ASKAP and SKA
 - 100 % renewables !!!
 - Integration of other generation technologies ?
 - Decision on battery systems: Technologies and possible partners
 - EMC issues
 - ...

- Time line for ASKAP:
 - EMC issues for stage 1
 - Starting point for stage 2
 - ...

- Project partners for stage 2

- Financing for a German-Australian collaboration project ?
 ...

© Fraunhofer ISE
Thanks for your attention!

Contact:
Dr. Matthias Vetter
matthias.vetter@ise.fraunhofer.de