Battery system technology

Dr. Matthias Vetter Fraunhofer Institute for Solar Energy Systems

Workshop - Renewable energy concepts for SKA and its pathfinders

Berlin, 7th of April 2011

PV off-grid solutions and battery system technology

- Team "Autonomous systems and mini-grids"
- Team "Battery modules and systems"
- Team "Solar driven water supply and storage systems"

Agenda

- Introduction "battery system technology"
- Overview of battery technologies
- Lead acid batteries
- Lithium-ion batteries
- Vanadium redox-flow batteries
- Conclusions

Battery system technology

Battery testing

- Development of battery modules and systems
- Battery monitoring
 - State of charge determination
 - State of health determination (capacity)
- Charging and operating control strategies
- Development of charge controllers and battery management systems
- Modeling and simulation
- Technical and economical system analyses (e.g. life cycle cost)

Battery laboratory at Fraunhofer ISE

- 1 x 250 kW, 1 kV, 600 A (Pack tester)
- 1 x 500 V, 100 A (Pack tester)
- 3 x 300 V, 5 A
- 32 x 6 V, 3 A (with reference electrode)
- 32 x 5 V, 5 A
- 18 x 12 V, 200 mA-10 A
- 8 x 18 V, 5A
- 32 x 5 V, 30 A (parallel switchable)
- 1 x 20V, 300 A
- 3 x 18 V, 100 A
- 12 x 70 V, 50 A
- 3 x 18 V, 100 A
- 4 channels impedance spectroscopy 1µHz – 4,5kHz
- 9 Climate and temperature chambers
- → 146 test circuits

Batteries: Ragone plot

Storage solutions – batteries

V-redox-flow

Source: www.saftbatteries.com

Lithium

Zinc-bromine

Source: B.L. Norris

NaS

Source: www.ngk.co.jp

Lead-acid

Storage solutions – batteries for MW PV power plants

© Fraunhofer ISE

Lead-acid batteries

Advantages:

- Market leading battery type
- Available in large quantities
- Available in a variety of sizes and designs
- Relatively high efficiency
- Low specific costs

Disadvantages:

- Low life cycle
- Limited energy density
- Hydrogen evolution in some designs
- High maintenance costs

Schematics of different charging regimes

- > Standard: constant current / constant voltage charge \rightarrow cc-cv
- Solar: constant current / constant voltage charge with two end-ofcharge voltage limits \rightarrow **cc-cv-cv**
- > **Intensive:** constant current / constant voltage charge followed by a limited constant current phase \rightarrow **cc-cv-cc**

Capacity gain by intensive charging

VRLA gel battery operates in a hybrid PV system with solar charging regime. Each half year capacity test plus intensive charging (I_{80} up to total charge of 112% C_{nom})

- Capacity after solar charging: 80 % C_{nom}
- Capacity after intensive charging: 100 % C_{nom}

Battery management system – **Results of field trial with lead acid batteries**

Lithium-ion batteries

Advantages:

- High energy density
- High power to capacity ratio
- Little or no maintenance
- Low self discharge
- High energy efficiency
- Long calendar life times
- Large number of cycles

Disadvantages:

- Safety need for protective circuit
- High initial costs
- Thermal runaway possible when overcharged or crushed

Lithium battery systems

Battery module – Connection methods

- Cell interconnectors
 - Laser welding
 - Ultrasonic welding
 - Spot welding
 - Gluing
- Mechanical stability of cells within a battery module
- Thermal connection of cells (e.g. via cooling plates)

Energy and battery management – Architecture

- Energy management system as central control unit
- Decentralized battery management system for each single battery module
- Determination of state of charge and state of health of each single cell possible

State of charge determination

- Ah counter: Integration of measurement errors
- Most conventional approaches:
 - > Use of some kind of OCV correction in combination with Ah counting
 - \rightarrow Recalibration of the SOC value via OCV consideration needs resting phases
- Flat OCV characteristic with hysteresis for LiFePO₄

State of charge determination

→ Approach: Kalman Filter

- More insensitive against measurement errors
- No resting phases necessary for recalibration of SOC
- Fast identification of starting values
- Improved performance for aged batteries
- Recursive state estimator
- Optimal estimator for processes with Gaussian noises
- Suitable only for linear systems
- For non-linear systems: Extended or Unscented Kalman Filter

State of charge determination

Approach: Extended Kalman Filter (EKF)

- Extension of Kalman Filter approach for non-linear systems:
 - Linearization within the operating point using first order Taylor series approximation

State of health determination

- Principle of Dual Extended Kalman Filter
 - > Two decoupled parallel Kalman Filters
 - Exchange of computed states of state filter (state of charge) and of weight filter (state of health)

State of health determination

DEKF: Dual Extended Kalman Filter; MA: Mean Average

22

Redox-flow batteries

Flow batteries:

- Different redox couples possible
- **Research focuses** on Vanadium
- Power and capacity decoupled

Redox-flow batteries

Advantages:

- Decoupling of power and capacity
 → Modularity
- Only two manufacture worldwide (!?)
- High cycle stability
- Low self discharge

Disadvantages:

- Low energy density
- Complex control strategies
- Flow battery → Risk of leakages

Cost analyses

Cost analyses

Annualized life cycle cost

Efficiencies

- At different current densities
- Complete charging / discharging
- CE: Coulombic Efficiency I

Efficiency

EE: Energy Efficiency

5-cell stack à 250 cm²

Development of a "Smart Redox-flow Control"

Smart Redox-flow Control: SOC forecast

SOC forecast:

- Simplified model of the VRFB system
- SOC calculation according to power demand
- Interface with energy management system
- Energy management system determines mode of operation for the VRFB

Batteries in PV applications Classification of operating conditions

	class 1	class 2	class 3	class 4
typical application	parking meter	residential house	mountain hut o small	or village supply big
solar fraction	100 %	70 - 90 %	about 50 %	< 50 %
storage size	> 10 days	3 -5 days	1 -3 days	about 1 day
charac- teristics for battery	 small currents few cycles (mainly one yearly cycle) 	 small currents large number of partial cycles (at different states of charge) 	 medium currents large number of partial cycles (at good states of charge) 	 high currents deep cycles (0.5 to 1 cycles per day)

Batteries in PV applications

State of charge for different operating conditions

Batteries in PV applications Partial cycling at low states of charge

Conclusions

Storages are the key component for 100 % renewables

- In off-grid applications
- And in on-grid applications
- Batteries have a huge potential to fulfil this task:
 - Modular design
 - Usable as decentralised and centralised storage systems
- For different purposes a variety of storages is available:
 - > Lithium-ion for short term storages and residential use
 - > Redox-flow for long term storages and in bigger stationary applications
 - > Lead-acid battery as state of the art in today's off-grid applications and UPS
- Hybridisation of (battery) storages \rightarrow Optimized system solutions

 \rightarrow Presentation on energy concept for ASKAP / SKA

Thanks for your attention!

Contact: Dr. Matthias Vetter matthias.vetter@ise.fraunhofer.de

