MAGNETIC FIELDS

MARCUS BRÜGGEN

BONN, 16 APRIL 2008

MAGNETIC FIELDS IN THE UNIVERSE

• EARTH	0.5 G (AT SURFACE)
• JUPITER	4 G
• SUN	10 G (POLES) 2000 G (SPOTS)
• WHITE DWARFS	10 ⁶ G
 NEUTRON STARS 	10 ¹² G
• GALAXY	5 x 10 ⁻⁶ G
• STARBURST GALAXIES	50 x 10 ⁻⁶ G
• RADIO GALAXIES	10 ⁻⁶ G
• ICM	10 ⁻⁶ G
• IGM	10 ⁻⁷ G-10 ⁻⁹ G

Spiral galaxies: thin rotating discs of 10^{10} stars and interstellar gas, $\langle n \rangle \simeq 1 \,\mathrm{cm^{-3}}$, $10^3 \lesssim n \lesssim 10^{-3} \,\mathrm{cm^{-3}}$, $10 \lesssim T \lesssim 10^6 \,\mathrm{K}$

M51

NGC 891

The multi-phase interstellar medium (ISM) in spiral galaxies

Phase	Origin	Density	Temperature	Size	Fractional
		$[{\rm cm}^{-3}]$	[K]	[pc]	volume, %
Molecular	Gravity,	10^{3}	10	10	0.1
clouds	thermal				
	instability				
Hydrogen	Compression	20	100	100	2
clouds	·				
Diffuse warm gas		0.1	10^{4}	—	60
Hot gas	Supernovae	10^{-3}	10^{6}	100-1000	38

FROM SHUKUROV

Galactic gaseous halos:

turbulent, rotating, hot, ionized, quasi-spherical gaseous envelopes of galactic discs

Multiple supernovae break through the gas layer

to fill the space above with buoyant hot gas

 $n \simeq 10^{-3} \,\mathrm{cm^{-3}}$, $T \simeq 10^6 \,\mathrm{K}$, $c_{\mathrm{s}} \simeq 100 \,\mathrm{km \, s^{-1}}$, $L \simeq 15 \,\mathrm{kpc}$

Simulation of the superbubble breakout to the halo (M-M. MacLow) gas density in a vertical cross-section 800 pc × 800 pc

Neutral hydrogen supershell distance 6.5 kpc, diameter 600 pc, vertical size 1.1 kpc (N. M. McLure-Griffits & J. R. Dickey)

FROM SHUKUROV

Magnetic fields observed in spiral galaxies $(\vec{H} = \vec{B} + \vec{b}, \langle \vec{H} \rangle = \vec{B})$

Synchrotron (radio) emission of relativistic electrons, $I \propto \int_0^L n_{\rm rel} H_{\perp}^2 ds$.

Large-scale magnetic field *B*: traced by the polarized emission, $P \propto \int_0^L n_{\rm rel} B_{\perp}^2 ds$, and Faraday rotation in thermal gas, $\text{RM} = K \int_0^L n_{\rm e} \vec{B} \cdot d\vec{s}$

Turbulent magnetic field b: traced by the unpolarized emission, I - P

FROM SHUKUROV

HST IMAGE OF THE SPIRAL GALAXY M 51 **OBTAINED, OVERLAID BY CONTOURS OF THE TOTAL RADIO INTENSITY AND POLARIZATION VECTORS** AT 6 CM WAVELENGTH, **COMBINED FROM RADIO OBSERVATIONS WITH THE EFFELSBERG AND VLA RADIO TELESCOPES. THE MAGNETIC FIELD** FOLLOWS WELL THE **OPTICAL SPIRAL** STRUCTURE, BUT THE **REGIONS BETWEEN THE** SPIRAL ARMS ALSO **CONTAIN STRONG AND ORDERED FIELDS.**

Fletcher and Beck

RAM-PRESSURE STRIPPING OF GALAXIES

JACOBS UNIVERSITY

ROEDIGER & BRÜGGEN (2007)

CLUSTERS OF GALAXIES

- LARGEST GRAVITATIONALLY BOUND STRUCTURES
- CONTAIN 100-1000 GALAXIES
- CONTAIN HOT (T AROUND 10⁸K), DILUTE (N AROUND 10⁻³CM⁻³) GAS
- HEATED BY ACCRETION SHOCKS
- MOST OF BARYONIC MATTER IS IN THIS GAS CALLED ICM
- ICM EMITS THERMAL BREMSSTRAHLUNG IN X-RAYS
- L_X=10⁴³-10⁴⁵ ERG S⁻¹
- HIERARCHICAL STRUCTURE FORMATION: CLUSTERS FORM BY

MERGERS OF SMALLER SYSTEMS

- COOL CORE CLUSTERS / NON-COOL CORE CLUSTERS
- ABSENCE OF COOLING FLOWS
- FEEDBACK

MAGNETIC FIELDS DERIVED FROM INVERSE COMPTON

• IF SYNCHROTRON AND IC X-RAY EMISSION ARE PRODUCED BY SAME POPULATION OF RELATIVISTIC ELECTRONS

 $L_{\rm IC} \propto u_{\rm CMB} \sim 5 \times 10^{-13} (1+z)^4 {\rm erg \, cm^{-3}}$

 $L_{\rm syn} \propto u_{\rm B} = B^2/8\pi$

 $\frac{L_{\rm syn}}{L_{\rm IC}} \propto \frac{u_{\rm B}}{u_{\rm CMB}}$

• PROBLEMS OF THIS METHOD:

LIMITATIONS OF OBSERVATIONS IN HARD X-RAY

DIFFICULTY IN DISTINGUISHING THERMAL AND NON-THERMAL X-RAYS

MAGNETIC FIELDS DERIVED FROM INVERSE COMPTON

• HXR NON-THERMAL EMISSION HAS BEEN DETECTED IN COMA AND A2256. OTHER DETECTIONS, E.G. IN A2199 AND A119 ARE CONTROVERSIAL

• MAGNETIC FIELD ESTIMATES YIELD 0.1 MUG.

• IC ESTIMATES OF MAGNETIC FIELDS ARE CONSISTENTLY LOWER

THAN FARADAY ESTIMATES

FARADAY ROTATION EFFECT

RH AND LH CIRCULARLY POLARISED WAVES PROPAGATE WITH
 DIFFERENT PHASE VELOCITIES WITHIN MAGNETO-IONIC MATERIAL
 POLARISATION ANGLE WILL BE ROTATED BY AMOUNT

$$\Delta \Psi = \frac{e^3 \lambda^2}{2\pi m_e^2 c^4} \int_0^L n_e(l) B_p(l) dl$$

$$\Delta \Psi = \lambda^2 \mathrm{RM}$$

• IN PRACTICAL UNITS

RM (rad/m²) = 812
$$\int_0^L n_e (\text{cm}^{-3}) B_p(\mu \text{G}) dl(\text{kpc})$$

• RM IS + FOR A MAGNETIC FIELD DIRECTED TOWARD THE OBSERVER

INTERPRETATION OF CLUSTER RM

• EXISTENCE OF SMALL-SCALE MAGNETIC FIELD STRUCTURES PRODUCE ROTATION OF POLARISATION ANGLE AND DEPOLARISATION

- FARADAY ROTATION BY TANGLED MAGNETIC FIELD
- \bullet ASSUME IT IS MADE OF UNIFORM CELLS OF SIZE L_{C}

$$< \text{RM} >= 0$$

$$\sigma_{\text{RM}}^{2} = 812^{2} l_{c} \int (n_{e} B_{p})^{2} dl$$

$$n_{e}^{2}(r) = n_{0} (1 + r^{2}/r_{c}^{2})^{-3\beta/2}$$

$$RM(r_{\text{perp}}) = \frac{K B n_{0} r_{c}^{1/2} l_{c}^{1/2}}{(1 + r_{\text{perp}}^{2}/r_{c}^{2})^{(6\beta-1)/4}} \sqrt{\frac{\Gamma(3\beta - 0.5)}{\Gamma(3\beta)}}$$

 σ_1

ROTATION MEASURES

- RM FROM EXTRAGALACTIC RADIO SOURCES:
 - INTRINSIC
 - GALAXY
 - ICM
- RM of galactic origin 10 rad m⁻² 300 rad m⁻² at low
- **GALACTIC MAGNITUDES**
- HIGH-RES RM STUDIES OF CYG A FIRST SHOWED HIGH RM VALUES
- WITH LARGE GRADIENTS OF ARCSEC SCALES
- KIM ET AL. (1991) USED 106 RADIO SOURCES IN COMA CLUSTERS
- AND DEDUCED MAGNETIC FIELD OF 10^{-6} G
- CLARKE ET AL. (2001) FIND 4 8 MUG

OBSERVATIONS:

- CLUSTER CORES CAN HOST FIELDS AS HIGH AS 10 MUG
- •E.G. HYDRA A AND 3C295
- FIELD IN COOL CORES HIGHER THAN IN NON-COOL CORES
- CORRELATION LENGTHS AROUND 10 KPC
- SPECTRAL INDICES 1.6 2.0
- FIELD IN FILAMENTS AROUND 10⁻⁷ G

QUESTION:

WHAT PRODUCES LARGE-SCALE MAGNETIC FIELDS IN CLUSTERS AND FILAMENTS?

POSSIBLE ANSWERS:

1. AMPLIFICATION OF PRIMORDIAL SEED FIELDS BY GRAVITATIONAL COLLAPSE OF STRUCTURES

Q: HOW BIG DOES THE SEED FIELD HAVE TO BE IF THIS IS THE DOMINANT MECHANISM?

Q: WHERE DOES SEED FIELD COME FROM?

POP III STARS? FIRST AGN? SHOCKS? BATTERIES?

2. INJECTION OF MAGNETIC FIELDS BY STARS AND AGN ETC.

Q: HOW DOES THE MAGNETIC FIELD DIFFUSE OUT INTO IGM?

FILAMENTS

MAGNETIC FIELD IN FILAMENTS SHOULD BE LESS POLLUTED BY OUTFLOWS FROM AGN.

-> BETTER PROBE FOR GRAVITATIONAL AMPLIFICATION

HYDRODYNAMICAL MODELS: UP TO HALF OF BARYONIC MATTER SHOULD HAVE $10^5 < T < 10^7$ K:

WARM-HOT INTERGALACTIC MEDIUM

WHIM DIFFICULT TO OBSERVE

CAN WE OBSERVE DIFFUSE SYNCHROTRON EMISSION FROM FILAMENTS?

Fig. 2: Contour images at 610 MHz from the Giant Metrewave Radio Telescope (GMRT) of proposed filaments: VLSS J0646.8-0722 (top left), VLSS J1133.7+2324 (top right), VLSS J1431.8+1331 (bottom left), and VLSS J2044.7+0447 (bottom right). The Gaussian beam size (~ 6 arcsec FWHM) is shown at the bottom left corner for each image. Contour levels are drawn at $\sqrt{[1, 2, 4, 6, 8, 16, 32]} \times 1.0$ mJy beam⁻¹.

JACOBS UNIVERSITY

FLASH SIMULATIONS...

Shortly: Relativistic accretion onto NS

wave preaking on white awarts

0.25

gnetic leigh.Taylor

UNIVERSITY

Na Ra

2

Orzag/Tang MHD vortex

Compressed turbulence Type Ia Supernova

Flame-vortex interactions

Richtmyer-Meshkov instability

Nova outbursts on white dwarfs

Cellular detonation

Laser-driven shock instabilities Rayleigh-Taylor instability

Helium burning on neutron stars

SOME SIMULATION SPECS

3D FLASH AMR SIMULATIONS: 10 LEVELS OF REFINEMENT: 8192³ EFFECTIVE ZONES

BOX SIZE = 64 / H MPC, GAS + 2 MILLION COLLISIONLESS PARTICLES

EFFECTIVE RESOLUTION 7.8 / H KPC

INITIAL CONDITIONS: SANTA BARBARA CLUSTER (3 SIGMA IN DENSITY SMOOTHED OVER 10 MPC AT REDSHIFT Z=50)

VECTOR FIELD: 512 FOURIER MODES FROM RANDOM DISTRIBUTION

PASSIVE MAGNETIC FIELD SOLVER ON STAGGERED MESH

Log Density in slice

$Log B^2$ in slice

Zoom into filament

DIFFUSION LENGTH MUCH GREATER ALONG FILAMENTS

FILAMENTS ARE EFFICIENT TRAPS FOR COSMIC RAYS

Fe line signature of bubbles

CONCLUSIONS

• IN CLUSTERS FIELDS ARE AMPLIFIED BY FACTOR OF 7000BETWEEN Z=50 and Z=0

- IN FILAMENTS AMPLIFICATION FACTOR IS 10-300
- MAGNETIC FIELD IS PARALLEL TO FILAMENTS
- SEED FIELD OF AROUND NG WOULD BE REQUIRED AT Z=50
- IN CLUSTER POWER SPECTRUM HAS INDEX OF 5/3
- 1% OF VOLUME IS FILLED WITH FIELD > 1NG

GALAXY CLUSTER IN OPTICAL, X-RAY AND RADIO

GALAXY CLUSTER IN OPTICAL, X-RAY AND RADIO

GALAXY CLUSTER IN OPTICAL, X-RAY AND RADIO

THE RADIO ZOO: DOUBLE RELIC

COLOR: X-RAY CONTOURS: RADIO

ABELL 3667

[ROETTGERING 97]

SMALL HALO AND LARGE RELIC

RED: X-RAY BLUE: RADIO

ABELL 2256

[CLARKE 06]

RELIC SPECTRUM

Merger ?	D [Mpc]	LLS [kpc]	
subcl.	0.6	150	A 85
boxy	1.3	2500	A 115
boxy	0.3	440	A 725
two cen.	5.0	1400	A 786
boxy	1.4	900	A 1240
subcl.	1.8	1100	A 1664
two cen.	2.1	900	A 2061
two cen.	0.7	1450	A 2256

SPECTRAL INDICES OF RADIO HALOS

500 Mpc 2 x 1024³ particle (in total ~ 2 billion)

Dark matter + gas SPH (Gadget)

no rad. Cooling

Mare Nostrum Universe

Radio power versus cluster temperature

- *if* massive clusters have a diffuse radio object, it is rather luminous
- the radio power -temperature relation is steep, index ~ 3.5

Total radio emission

JACOBS UNIVERSITY

10 Mpc/h

N

S

erg

 $d^2 P$

radio emission from cosmic shock waves

Enßlin et al. '98 Miniati, Jones, Kang, Ryu '01 Keshet, Waxman, Loeb '04

$\frac{\langle \mathcal{M} d\varepsilon_{\rm diss} / (d \log a) \rangle_{\rm los}}{\langle d\varepsilon_{\rm diss} / (d \log a) \rangle_{\rm los}}$

Pfrommer, Springel, Enßlin, Jubelgas (2006)

• • •

COSMOLOGICAL MACH NUMBER STATISTICS

PFROMMER ET AL.

Radio power and magnetic field

total emission [erg s⁻¹ Hz⁻¹

- for a known Mach number we can infer the magnetic field strength
- for A3667 B ~ 0.2 μG

e⁻ momentum spectrum

JACOBS UNIVERSITY

Reviving fossil radio plasma

 $dp = -\frac{4}{3}\sigma_T \{u_B + u_{\rm CMB}\} - \frac{1}{3}\frac{1}{V}dV$

AGN fossil radio plasma (ghost)

relic

Bubble in shock front

Density

Magnetic field energy density

1.0291

200

[Enßlin&Brüggen01]

It works

VLA @ 300 MHz ~ 1 mJy LOFAR @ 200 MHz ~ 0.05 mJy

RELICS SUMMARY

A VARIETY OF DIFFUSE RADIO OBJECTS HAS BEEN OBSERVED

RADIO GALAXIES AND INTERGALACTIC SHOCK WAVES ARE SOURCES FOR HIGH-ENERGY PARTICLES IN THE UNIVERSE

LOFAR SHOULD FIND > 100 RELICS AT LOW FREQUENCIES

CLUSTERS OF GALAXIES SHOW IN GENERAL MULTIPLE STRONG ACCRETION SHOCKS

DETECTING THEIR RADIO EMISSION GIVES UNIQUE INSIGHTS INTO BARYONIC STRUCTURE FORMATION AND PLASMA PHYSICAL PROCESSES

