SKA AND
THE COSMOLOGICAL EVOLUTION
OF CLUSTER MAGNETIC FIELDS

MARTIN KRAUSE
UNIVERSITY OF CAMBRIDGE,
UNIVERSITÄTSSTERNWARTE MÜNCHEN &
MAX-PLANCK-INSTITUT FÜR EXTRATERRESTRISCHE PHYSIK

COLLABORATORS:
P.ALEXANDER, ROSIE BOLTON, DONGSU RYU, JOERN GEISBUSCH
ELECTRON DENSITY

- Density of electrons well known:
 - Cosmological parameters, e.g. baryon fraction
 - Cosmological evolution / simulations
 - Observations, e.g. X-ray measurements

COSMOLOGICAL SIMULATION, CREDITS: DONGSU RYU
MAGNETIC FIELD

- Magnetic fields poorly known
- Observations (synchrotron, inverse Compton, Faraday rotation): few microgauss
- In voids: very small fields, produced in early universe, unknown
- In clusters: enhanced by turbulent dynamo to equipartition, problem: turbulent energy unknown

COSMOLOGICAL SIMULATION, CREDITS: DONGSU RYU

MARTIN KRAUSE: SKA AND THE COSMOLOGICAL EVOLUTION OF CLUSTER MAGNETIC FIELDS
REVISION – FARADAY ROTATION

- Measure magnetic fields through Faraday rotation of plane of polarisation of light from background source. Rotation dependent on wavelength - measure rotation in several channels.

- Only gives line integral - B parallel to LOS.

- Requires electron density to be known (X-ray).

\[
RM = 812 \int n_e B_{LOS} dl \quad \text{Radians m}^{-2}
\]

\[
\Delta \theta = \frac{RM \times \lambda^2}{(1 + z)^2}
\]
FARADAY ROTATION: MEASUREMENT

☐ MEASURE RM AND NE

☐ INFER B

☐ CAVEAT: FIELD STRUCTURE/REVERSALS - LATER

COSMOLOGICAL SIMULATION, CREDITS: DONGSU RYU
OVERVIEW

☐ MAGNETIC FIELDS: ORIGIN AND AMPLIFICATION

☐ CURRENT FARADAY ROTATION STUDIES

☐ THE FUTURE: TOWARDS THE SKA, SOURCE STATISTICS

☐ SYNERGIES: ELECTRON DENSITIES AT HIGH REDSHIFT
MAGNETIC FIELDS: ORIGIN AND AMPLIFICATION

- **SEED FIELDS:**
 - **BIERMANN BATTERY:** \(\mathbf{E} = \nabla \times \mathbf{B} \)\(\Rightarrow \) \(\mathbf{E}_{\text{BIERM}} = -\frac{\nabla \rho}{\mathbf{E}} \times \mathbf{B} \)\(\Rightarrow \) INDUCTION SOURCE \(\Rightarrow \) \(B \) OF ORDER \(10^{-20} \) GAUSS

- **THOMSON CROSS SECTION** \(\propto \frac{1}{m} \Rightarrow \) PHOTON/ \(e^-p \) SCATTERING
 ASSYMETRY/ RECOMBINATION ERA \(\Rightarrow \) \(10^{-30} - 10^{-21} \) GAUSS

- **SEEDED IN STARS (SIM.: AGN) AND EJECTION** \(\Rightarrow \) \(< 10^{-9} \) GAUSS

- **VACUUM FLUCTUATIONS / INFLATION** \(\Rightarrow \) UP TO \(10^{-9} \) GAUSS, NOW
MAGNETIC FIELDS: ORIGIN AND AMPLIFICATION

- AMPLIFICATION

- HELICAL/MEAN FIELD DYNAMOS: GALAXIES

- RELEVANT IN CLUSTERS: TURBULENT DYNAMO - FIELD LINE STRETCHING $\Rightarrow B \propto L \Rightarrow L$ GROWS (RANDOM WALK) \Rightarrow EXPONENTIAL GROWTH ON EDDY TURNOVER TIMESCALE, SATURATION AT EQUIPARTITION
CONCLUSION:

MAGNETIC FIELDS NEED A SPECIFIC SEED MECHANISM, DYNAMOES FOR AMPLIFICATION AND SUSTAINING

MF MEASUREMENTS PROMISE UNDERSTANDING OF:

- SEED MECHANISM
- AMPLIFICATION/CLUSTER DYNAMICS
- PLASMA PHYSICS/TRANSPORT COEFFICIENTS
MAGNETIC FIELDS: ORIGIN AND AMPLIFICATION

- How may we measure this?
- \(\text{DIV}(B) = 0 \)
- Ampl. early universe fields, coherent Mpc scales: \(<RM> \neq 0 \)
- Locally dynamo amplified fields, coherent on cluster scales: \(<RM^2> \neq 0 \)
CURRENT
FARADAY ROTATION STUDIES

A2255 - GOVONI ET AL.

☐ FEW SOURCES/CLUSTER

☐ <RM> = 0

☐ <RM^2> = 100 RAD/M^2

☐ KOLMOGOROV TURBULENCE?
THE FUTURE: TOWARDS THE SKA

- HOW MAY WE IMPROVE?

- NEED MORE INDEPENDENT SIGHTLINES

 >> MORE SOURCES: $\Delta <RM> \propto 1/\sqrt{N}$,

 CURRENTLY: $\Delta <RM> \sim 10\text{rad/m}^2$

- ALSO FOREGROUND SOURCES (GALACTIC CONTR.)

- HOW MUCH WILL WE IMPROVE? SIMULATIONS!

1. CLUSTERS AND RADIO SOURCES FROM COSMOLOGICAL CALCULATION (POPULATION OF DENSITY FIELD EVOLVED ACCORDING TO LINEAR THEORY)
EXPECTED RM’S STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>VLA</th>
<th>SKA phase1</th>
<th>SKA full</th>
</tr>
</thead>
<tbody>
<tr>
<td>sens.: 1h/10^-6 Jy</td>
<td>17</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>field of view / deg</td>
<td>.6/f^2</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

- Still few BG sources
- First high z measurements

Phase 1 SKA, 1h pointing

Radio sources / cluster

Clusters / pointing

Martin Krause: SKA and the Cosmological Evolution of Cluster Magnetic Fields
EXPECTED RM’S STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>VLA</th>
<th>SKA phase1</th>
<th>SKA full</th>
</tr>
</thead>
<tbody>
<tr>
<td>sens.: 1h/10⁻⁶ Jy</td>
<td>17</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>field of view / deg</td>
<td>0.6/f²</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

- **Better than present day statistics at z > 1**
- **Good statistics, 1000s of clusters will have measured RMS**

Phase 1 SKA, 100h pointing

- **Radio sources / cluster**

Martin Krause: SKA and the Cosmological Evolution of Cluster Magnetic Fields

SKADS
> 100 CLUSTERS WITH 100S OF BG SOURCES EVEN SOME AT Z > 1
Expected RM’s Statistics

<table>
<thead>
<tr>
<th></th>
<th>VLA</th>
<th>SKA phase1</th>
<th>SKA full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sens.: 1h/10^6 Jy</td>
<td>17</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>Field of view/deg</td>
<td>.6/f^2</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Some clusters will have RMS from > 10,000 sources

\[\Delta <RM> \sim 0.1 \text{rad/m}^2 \]
SYNERGIES

- ESP. FOR HIGH REDSHIFT: ELECTRON DENSITIES
- SUNYAEV-ZELDOVICH EFFECT / HIGH FREQUENCY RADIO TELESCOPES
- THERMAL EMISSION / X-RAY
MARTIN KRAUSE: SKA AND THE COSMOLOGICAL EVOLUTION OF CLUSTER MAGNETIC FIELDS

CONCLUSIONS

- Magnetic fields in clusters of galaxies may have a component correlated on super-cluster scale, producing a small $<\langle R M \rangle > \neq 0$

- Overlaid is a turbulence related cluster scale field, producing $<\langle R M^2 \rangle > \neq 0$

- Today: $<\langle R M^2 \rangle > = 100 \text{rad/m}^2 > <\langle R M \rangle$, Kolmogorov?

- Full SKA: >1000 sources even at high z, impacting on:
 - Turbulence / Cluster Dynamics
 - Plasma Physics / Transport Coefficients
 - Large scale field detection possible