Multifrequency Kinematic Study of the Blazar 0716+714 During the Active State in 2004:

The inner jet structure and kinematics

Elizaveta Rastorgueva¹ Kaj Wiik¹, Tuomas Savolainen²

¹Tuorla Observatory, Turku, Finland ²MPIfR, Bonn, Germany

Is a BLAZAR (What does it mean?)

AGN

- No spectral lines
- Strongly variable
- One-sided jet

- Extremely variable at different timescales
- IDV: correlated in optical and radio bands (Quirrenbach et al. 1991 and Wagner et al. 1996)
- Redshift is unknown: z>0.1; 0.3; 0.52
- Radio flare: Nov 2003 and major optical outburst: May 2004. International observing campaign (Ostorero et al. 2006)
- Controversial description of VLBI kinematics in the literature

Model#1: fast superluminal onward motion of components: _{app}~5-21c (Jorstadt et al. 2001, Bach et al. 2005)

Model#2: oscillation of components around the mean position on the timescale of ~10 years with the projected velocities of ______~5-10c (Britzen et al. 2006)

Model#1: fast superluminal onward motion of components: _{app}~5-21c (Jorstadt et al. 2001, Bach et al. 2005)

Model#2: oscillation of components around the mean position on the timescale of ~10 years with the transverse velocities of ______~5-10c (Britzen et al. 2006)

Multi-frequency experiment

VLBA

 Aim: to resolve the inner jet → observations on the high frequencies: 86, 43 and 22 GHz.

Aim: monitor jet components

→5 epochs separated by ~month: 10 Feb,
3 May, 18 Jun, 29 Jul and 29 Aug 2004

Multi-frequency experiment

VLBA

 Aim: to resolve the inner jet → observations on the high frequencies: 86, 43 and 22 GHz.

Aim: monitor jet components

→5 epochs separated by ~month: 10 Feb,
3 May, 18 Jun, 29 Jul and 29 Aug 2004

Smooth flux distribution along the jet.

Fit performed using travelled distance!

Fit performed using travelled distance!

Fit performed using travelled distance!

Fit performed using travelled distance!

Comp.	/ mas/yr	app		
name		Z=0.1	Z=0.3	Z=0.52
K1	1.07±0.10	7.0±0.6	20.0±1.9	32.7±3.0
K2	1.01± 0.05	6.6±0.3	18.9±0.9	30.8±1.5
K3	0.43± 0.03	2.8±0.2	9.1±0.6	13.2±0.9

Fit to the 43 and 22 GHz data: superluminal speeds

Comp. name	, mas/yr		app	
		Z=0.1	Z=0.3	Z=0.52
K 1	1.1	7.0	20	33
K2	1.0	6.6	19	31
K3	0.4	2.8	9	13

Fit to the 43 and 22 GHz data: superluminal speeds

Trajectories of the individual components in the inner jet: **helical motion**.

Kelvin–Helmholtz instability (Lobanov, Hardee & Eilek 2005; M87)

Two-fluid jet model (Fraix-Burnet & Despringre 1996)

Helical jet model (Villata & Raiteri 1999)

Changes of the of the standing shock spectral index with time: optically thin \rightarrow optically thick.

At 3 first epochs standing shock as optically thin, on the last two – optically thick

Domination of the core emission over emission from component

Plans for the near future

Lower frequencies (5 and 1.6 GHz)
Component spectra
Polarization

Plans for the near future

Lower frequencies (5 and 1.6 GHz)
Component spectra
Polarization

Thank you for your attention!