# Exoplanets

### Philippe Zarka

LESIA, Observatoire de Paris/CNRS, Meudon

philippe.zarka@obspm.fr

- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

#### ~280 exoplanets in ~240 systems



#### [www.obspm.fr/planets]

### mostly detected via radial velocity measurements since 1995



<sup>[</sup>Mayor & Queloz, 1995]

### bias favouring large $m_p$

### actually since 1992!



SUN MERCURY VENUS EARTH



#### ~20% of "Hot Jupiters" at ≤0.05 AU = 10 Rs



### Hot Jupiters





- T > 1000 K  $\rightarrow$  non-local formation
- Bimodal distribution of semi-major axes  $\rightarrow$  2 types of objects and mechanisms

### Hot Jupiters





- T > 1000 K  $\rightarrow$  non-local formation
- Bimodal distribution of semi-major axes  $\rightarrow$  2 types of objects and mechanisms

 $\rightarrow$  Migration



### Radial velocities $\rightarrow$ measurement of m<sub>p</sub>×sin(i), a, P, e, $\Phi$



#### Transits







#### Transits



 $\rightarrow$  atmospheric spectroscopy (H, O, C lines)

[Vidal-Madjar et al., 2003]



#### Transits



 $\rightarrow$  atmospheric spectroscopy (H, O, C lines)

[Vidal-Madjar et al., 2003]

 $\rightarrow$  ~15 observed today : mesurements of i, P, R<sub>p</sub>



- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

#### Atmospheric transparency



#### Atmospheric transparency



### Obstacles to direct exoplanet detection

🕅 contrast & proximity star/planet



• A low frequencies, thermal spectrum in  $\lambda^{-2}$ 

 $B(v) dv = 2kTv^2/c^2 dv = 2kT/\lambda^2 dv \qquad [Wm^{-2}Hz^{-1}sr^{-1}] \qquad (Rayleigh-Jeans)$ 

• A very low frequencies, solar and planetary spectra \$\neq\$ thermal





• Magnetospheric auroral radio emissions due to coherent « Plasma » processes Contrast Sun/Jupiter ~1!





• Synchrotron radio emissions from radiation belts due to incoherent « Plasma » processes 😿 5 orders of magnitude weaker



Jupiter, longitude 312 deg.



Jovian distance (R.)

- Synchrotron radio emissions from radiation belts due to incoherent « Plasma » processes 🕅 5 orders of magnitude weaker
- Other : Lightning ... 🕅 LF & weak



Jupiter, longitude 312 deg.



Jovian distance (R.)

### Limitations of Radio observations

- Limited angular resolution ( $\lambda$ /D)
- Very bright galactic background ( $T_b \sim 10^{3-5}$  K)
- RFI (natural & anthropic origin)
- Ionospheric cutoff ~ 10 MHz,

perturbations ≤30-50 MHz,

scintillations IP/IS







Sensitivity of Radio observations

• <u>Galactic radio background</u>:  $T \sim 1.15 \times 10^8 / v^{2.5} \sim 10^{1-5} K$  (10-1000 MHz)

- $\rightarrow$  S = 2kT/A<sub>e</sub> with statistical fluctuations  $\sigma = 2kT/A_e(b\tau)^{1/2}$
- $\rightarrow$  N = s /  $\sigma$  with s =  $\zeta S_T / d^2$

 $S_J \sim 10^{-18} \text{ Wm}^{-2}\text{Hz}^{-1}$  (10<sup>8</sup> Jy) à 1 UA



Sensitivity of Radio observations

• <u>Galactic radio background</u>:  $T \sim 1.15 \times 10^8 / v^{2.5} \sim 10^{1-5} K$  (10-1000 MHz)

 $\rightarrow$  S = 2kT/A<sub>e</sub> with statistical fluctuations  $\sigma = 2kT/A_e(b\tau)^{1/2}$  $\rightarrow$  N = s /  $\sigma$  with s =  $\zeta S_T / d^2$  $S_{T} \sim 10^{-18} \text{ Wm}^{-2} \text{Hz}^{-1}$  (10<sup>8</sup> Jy) à 1 UA

• <u>Maximum distance for No detection of a source ζ x Jupiter</u> :  $d_{max} = (\zeta S_T A / 2 N k T)^{1/2} (b\tau)^{1/4}$  $\Rightarrow d_{max}$  (pc) = 5×10<sup>-8</sup> (A<sub>o</sub>  $\zeta$ )<sup>1/2</sup> f<sup>5/4</sup> (b $\tau$ )<sup>1/4</sup>



⇒ζ**=1** 

|                                                               | b τ = 10 <sup>6</sup><br>(1 MHz, 1 sec) |         | b τ = 2×10 <sup>8</sup><br>(3 MHz, 1 min) |         | $b \tau = 4 \times 10^{10}$<br>(10 MHz, 1 hour) |         |
|---------------------------------------------------------------|-----------------------------------------|---------|-------------------------------------------|---------|-------------------------------------------------|---------|
|                                                               |                                         |         |                                           |         |                                                 |         |
|                                                               | f = 10                                  | f = 100 | f = 10                                    | f = 100 | f = 10                                          | f = 100 |
|                                                               | MHz                                     | MHz     | MHz                                       | MHz     | MHz                                             | MHz     |
| A <sub>e</sub> = 10 <sup>4</sup> m <sup>2</sup><br>(~NDA)     | 0.003                                   | 0.05    | 0.01                                      | 0.2     | 0.04                                            | 0.7     |
| A <sub>e</sub> = 10 <sup>5</sup> m <sup>2</sup><br>(~UTR-2)   | 0.01                                    | 0.2     | 0.03                                      | 0.6     | 0.1                                             | 2.2     |
| A <sub>e</sub> = 10 <sup>6</sup> m <sup>2</sup><br>(~LOFAR77) | 0.03                                    | 0.5     | 0.1                                       | 2.      | 0.4                                             | 7.      |

(distances in parsecs)

- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

## Solar Wind - Magnetosphere Interaction



### Aurorae



#### Aurorae





### Magnetospheric (auroral) radio emissions



#### Properties of auroral radio emissions

- f ~ f<sub>ce</sub> ,  $\Delta$ f ~ f
- T<sub>B</sub> > 10<sup>15</sup> K
- circular/elliptical polarization (X mode)
- very anisotropic beaming (conical,  $\Omega << 4\pi$  sr)
- variability /t (bursts, rotation, solar wind...)
- correlation radio / UV
- radiated power : 10<sup>6-11</sup> W



### Generation of auroral radio emissions

Cyclotron-Maser (coherent) emission : 2 conditions within sources :

- low  $\beta$  magnetized plasma (f<sub>pe</sub> << f<sub>ce</sub>)

- energetic electrons (keV) with non-Maxwellian distribution
- $\rightarrow$  high magnetic latitudes
- $\rightarrow$  direct emission at f ~ f<sub>x</sub>  $\approx$  f<sub>ce</sub>

### Generation of auroral radio emissions

• Cyclotron-Maser (coherent) emission : 2 conditions within sources :

- low  $\beta$  magnetized plasma (f<sub>pe</sub> << f<sub>ce</sub>)

- energetic electrons (keV) with non-Maxwellian distribution
- $\rightarrow$  high magnetic latitudes
- $\rightarrow$  direct emission at f ~ f<sub>x</sub>  $\approx$  f<sub>ce</sub>



### Generation of auroral radio emissions

Cyclotron-Maser (coherent) emission : 2 conditions within sources :

- low  $\beta$  magnetized plasma ( $f_{pe} \ll f_{ce}$ )

- energetic electrons (keV) with non-Maxwellian distribution
- $\rightarrow$  high magnetic latitudes
- $\rightarrow$  direct emission at f ~ f<sub>x</sub>  $\approx$  f<sub>ce</sub>
- Acceleration of electrons :
  - interactions B/satellites  $\mathbb{X}$   $E_{//}$ , heating
  - magnetic reconnection
  - MS compressions



#### NB : Strong correlation between Solar Wind (P, V...) and auroral radio emissions



- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations
# Solar Wind - Magnetosphere Interaction



### Solar Wind - Magnetosphere Interaction



Magnetopause radius R<sub>MP</sub> pressure equilibrium :

### from

# Solar Wind - Magnetosphere Interaction



- Kinetic energy flux on MS cross-section :  $P_c \sim NmV^2 V \pi R_{MP}^2$  $N=N_{o}/d^{2}$   $N_{o}=5$  cm<sup>-3</sup> m~1.1×m<sub>p</sub>
- Poynting flux of  $B_{IMF}$  on MS cross-section :  $P_B = \int_{MP} (E \times B/\mu_o) dS$  $\mathbf{E} = -\mathbf{V} \times \mathbf{B} \quad \mathbf{W} \quad \mathbf{E} \times \mathbf{B} = \mathbf{V} \mathbf{B}_{\perp}^{2} \quad \mathbf{W}$

# from

# $P_{B} = B_{1}^{2}/\mu_{0} V \pi R_{MP}^{2}$

### Solar Wind expansion

V ~  $c^{te}$ N ~  $d^{-2}$  (mass conservation) B<sub>R</sub> ~  $d^{-2}$  (magnetic flux conservation) B $\phi$  ~  $d^{-1}$  (B<sub>R</sub>/B $\phi$  = V/ $\Omega d$ )  $\boxtimes$  B ~  $d^{-1}$ (beyond Jupiter orbit, B ~B $\phi$ )



### Solar Wind expansion

 $V \sim c^{te}$   $N \sim d^{-2}$  (mass conservation)  $B_R \sim d^{-2}$  (magnetic flux conservation)  $B\phi \sim d^{-1}$  ( $B_R/B\phi = V/\Omega d$ )  $\boxtimes B \sim d^{-1}$ (beyond Jupiter orbit,  $B \sim B\phi$ )

 $\textcircled{B}^2$  varies as NV<sup>2</sup> thus P<sub>c</sub> varies as P<sub>B</sub>

 $\mathbb{W} P_C / P_B \sim 170 \text{ beyond } 1 \text{ UA}$ 



| 、                                                                                |                                                                                              | · · · · · · · · · · · · · · · · · · · |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|
| Flow<br>Obstacle                                                                 | Weakly/Not<br>magnetized<br>(Solar wind)                                                     | Strong<br>(Jovian                     |
| Weakly/Not magnetized<br>(Venus, Mars, Io)                                       | No Intense Cyclotron<br>Radio Emission                                                       | <u>Unipolar</u><br>induced            |
| Strongly magnetized<br>(Earth, Jupiter, Saturn,<br>Uranus, Neptune,<br>Ganymede) | <u>Magnetospheric</u><br><u>Interaction</u> ‡ Auroral<br>Radio Emissions :<br>E, J, S, U, N, | <u>Dipola</u><br>Ganymeo              |

#### gly magnetized

magnetosphere)

#### interaction ‡ Io-Radio Emission,

<u>r interaction</u> ‡ de-induced Radio Emission

| Flow                                                                             | Weakly/Not<br>magnetized<br>(Solar wind)                                                     | Strong<br>(Jovian             |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| Obstacie                                                                         | (Solar Willa)                                                                                |                               |
| Weakly/Not magnetized<br>(Venus, Mars, Io)                                       | No Intense Cyclotron<br>Radio Emission                                                       | <u>Unipolar</u><br>induced    |
| Strongly magnetized<br>(Earth, Jupiter, Saturn,<br>Uranus, Neptune,<br>Ganymede) | <u>Magnetospheric</u><br><u>Interaction</u> ‡ Auroral<br>Radio Emissions :<br>E, J, S, U, N, | <u>Dipola</u><br>Ganymed<br>] |

#### gly magnetized

magnetosphere)

#### interaction ‡ Io-Radio Emission,

<u>r interaction</u> ‡ de-induced Radio Emission











UT (seconds)

• Interaction via Alfvén waves & currents



• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents





• Interaction via Alfvén waves & currents

 $(e.g. \text{ Io-Jupiter}) \qquad \varphi = E \times 2R_{obs} = V \times B_{\perp} \times 2R_{obs}$   $P_{d} = \varepsilon' V B_{\perp}^{2} / \mu_{o} \pi R_{obs}^{2}$   $\varepsilon' = (1 + M_{A}^{-2})^{-1/2} \qquad M_{A} \le \varepsilon' \le 1$   $\boxed{W} \qquad P_{d} = \varepsilon' P_{B}$ 





• Interaction via Alfvén waves & currents





| Flow                                                                             | Weakly/Not<br>magnetized                                                                     | Strong<br>(Jovian             |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| Obstacle                                                                         | (Solar wind)                                                                                 |                               |
| Weakly/Not magnetized<br>(Venus, Mars, Io)                                       | No Intense Cyclotron<br>Radio Emission                                                       | <u>Unipolar</u><br>induced    |
| Strongly magnetized<br>(Earth, Jupiter, Saturn,<br>Uranus, Neptune,<br>Ganymede) | <u>Magnetospheric</u><br><u>Interaction</u> ‡ Auroral<br>Radio Emissions :<br>E, J, S, U, N, | <u>Dipola</u><br>Ganymed<br>J |



 Magnetic reconnection (e.g. Ganymede-Jupiter)

 $P_d = \varepsilon K V B_{\perp}^2 / \mu_o \pi R_{MP}^2$ 

Efficiency  $\varepsilon \sim 0.1-0.2$ 

K= sin<sup>4</sup>( $\theta$ /2) ou cos<sup>4</sup>( $\theta$ /2)

 $P_d = \varepsilon P_B$ 



в

 Magnetic reconnection (e.g. Ganymede-Jupiter)  $P_d = \varepsilon K V B_{\perp}^2 / \mu_o \pi R_{MP}^2$ Efficiency  $\varepsilon \sim 0.1-0.2$ K= sin<sup>4</sup>( $\theta$ /2) ou cos<sup>4</sup>( $\theta$ /2)  $P_d = \varepsilon P_B$ 

--5





- Torus Plasma Flow
- ⇒ Ganymede's Magnetospheric Flow
  - Upstream Reconnection Line
  - Downstream Reconnection Line

#### open-closed boundary

| 、                                                                                |                                                                                              |                               |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| Flow<br>Obstacle                                                                 | Weakly/Not<br>magnetized<br>(Solar wind)                                                     | Strong<br>(Jovian             |
| Weakly/Not magnetized<br>(Venus, Mars, Io)                                       | No Intense Cyclotron<br>Radio Emission                                                       | <u>Unipolar</u><br>induced    |
| Strongly magnetized<br>(Earth, Jupiter, Saturn,<br>Uranus, Neptune,<br>Ganymede) | <u>Magnetospheric</u><br><u>Interaction</u> ‡ Auroral<br>Radio Emissions :<br>E, J, S, U, N, | <u>Dipola</u><br>Ganymed<br>J |

gly magnetized *magnetosphere)* 

interaction ‡ Io-Radio Emission,

<u>r interaction</u> ‡ de-induced Radio Emission







# HD 209458B (Osiris)

[Vidal-Madjar et al., 2003]



#### Strongly magnetized

(Jovian magnetosphere)

#### <u>Unipolar interaction</u> ‡ Ioinduced Radio Emission,

Dipolar interaction ‡ Ganymede-induced Radio Emission

- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

### « Radio-kinetic Bode's law » (auroral emissions)





[Desch and Kaiser, 1984 ; Zarka, 1992]

### « Radio-magnetic Bode's law » (auroral emissions)



[Zarka et al., 2001]



#### « Generalized radio-magnetic Bode's law » (all emissions)





[Zarka et al., 2001, 2005]

- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

• ~280 exoplanets (in ~240 systems) 16% with  $a \le 0.05$  UA (10 Rs) 24% with  $a \le 0.1 \text{ UA}$ 

>40 « hot Jupiters » with periastron @  $\sim$ 5-10 R<sub>s</sub>

 ~280 exoplanets (in ~240 systems) 24% with  $a \le 0.1 \text{ UA}$ 

#### >40 « hot Jupiters » with periastron @ $\sim$ 5-10 R<sub>S</sub>

- Magnetic field at Solar surface :
  - $\rightarrow$  large-scale ~1 G (10<sup>-4</sup> T)
  - $\rightarrow$  magnetic loops ~10<sup>3</sup> G,

over a few % of the surface

• Magnetic stars : >  $10^3 G$ 



# 16% with $a \le 0.05$ UA (10 Rs)

# Modelling of a hot Jupiter (magnetized) orbiting a Solar type star

• Electron density in Solar corona



Solar wind speed in the planet's frame




• Interplanetary magnetic field



• Dissipated power per unit area of the obstacle



Magnetospheric compression



• Total dissipated power on obstacle



• Total dissipated power on obstacle



• Total dissipated power on obstacle







[Farrell et al., 1999, 2004]

 $P_{Radio} = P_{Radio-J} \times 10^3$ 



• Extrapolation / Radio-kinetic Bode's law

[Farrell et al., 1999, 2004]

• Extrapolation / Radio-magnetic Bode's law PRIVATE USE

[Zarka et al., 2001, 2005; Zarka, 2007]

### $P_{\text{Radio}} = P_{\text{Radio}-J} \times 10^3$

 $P_{\text{Radio}} = P_{\text{Radio}-J} \times 10^5$ 



• Extrapolation / Radio-kinetic Bode's law

[Farrell et al., 1999, 2004]

 Extrapolation / Radio-magnetic Bode's law PRIMATE USE

[Zarka et al., 2001, 2005; Zarka, 2007]

### except if there is a « saturation » mechanism

### $P_{Radio} = P_{Radio-J} \times 10^3$

- $P_{Radio} = P_{Radio-J} \times 10^5$

### Planetary magnetic field decay?

- Radio detection  $\mathbb{K}$  f > 10 MHz  $\mathbb{K}$  B<sub>max-surface</sub> > 4 G
- Jupiter :  $\mathcal{M} = 4.2 \text{ G.R}_{J}^{3}$ ,  $B_{\text{max-dipole}} = 8.4 \text{ G}$ ,  $B_{\text{max-surface}} = 14 \text{ G}$ ,  $f_{\text{max}} = 40 \text{ MHz}$
- Spin-orbit synchronisation (tidal forces)  $\boxtimes \omega_{\downarrow}$
- But  $\mathcal{M} \propto \omega^{\alpha}$  with  $\frac{1}{2} \leq \alpha \leq 1$  [X]  $\mathcal{M} \downarrow$  (B decay)?

### Planetary magnetic field decay?

- Radio detection  $\mathbb{K}$  f > 10 MHz  $\mathbb{K}$  B<sub>max-surface</sub>  $\geq 4 G$
- Jupiter :  $\mathcal{M} = 4.2 \ G.R_J^3$ ,  $B_{max-dipole} = 8.4 \ G$ ,  $B_{max-surface} = 14 \ G$ ,  $f_{max} = 40 \ MHz$
- Spin-orbit synchronisation (tidal forces)  $\boxtimes \omega_{\downarrow}$
- But  $\mathcal{M} \propto \omega^{\alpha}$  with  $\frac{1}{2} \leq \alpha \leq 1$  [X]  $\mathcal{M} \downarrow$  (B decay)?
- Internal structure + convection models Self-sustained dynamo Self-sustained dynamo  $\mathbb{W} \mathcal{M}$  could remain  $\geq$  a few  $G.R_T^3$

| Planet                                                                       | М<br>(М <sub>J</sub> )      | $P_{\rm orb}$ (days)         | $\begin{array}{c} R \\ (R_{J}) \end{array}$ | <i>M</i> <sub>D</sub><br>(G m <sup>3</sup> )                                                 | <i>B</i> <sub>s</sub><br>(G) |
|------------------------------------------------------------------------------|-----------------------------|------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------|
| HD 179949b <sup>a</sup><br>HD 209458b<br>τ Boo b <sup>a</sup><br>OGLE-TR-56b | 0.84<br>0.69<br>3.87<br>0.9 | 3.093<br>3.52<br>3.31<br>1.2 | 1.3<br>1.43<br>1.3<br>1.3                   | $1.1 \times 10^{24}$<br>$0.8 \times 10^{24}$<br>$1.6 \times 10^{24}$<br>$2.2 \times 10^{24}$ | 1.4<br>0.8<br>2<br>2.8       |

UPPER LIMIT OF MAGNETIC FIELDS IN HOT JUPITERS

[Sanchez-Lavega, 2004]

• Unipolar inductor in sub-Alfvénic regime (as for Io-Jupiter)



- But radio emission possible only if  $f_{pe}/f_{ce} \ll 1$ intense stellar B required ( $\kappa = 10-100 \times B_{Sun}$ )
  - $\swarrow$  emission  $\geq$  30-250 MHz from 1-2 R<sub>S</sub>



• Extrapolation / Radio-magnetic Bode's law [Zarka , 2005, 2007]  $\mathbb{R} P_{\text{Radio}} = P_J \times 10^5 \times (R_{\text{exo-ionosphere}}/R_{\text{magnetosphere}})^2 \times (B_{\text{star}}/B_{\text{Sun}})^2$  $= P_{\text{Radio-J}} \times 10^6$ 





# $\Rightarrow \zeta = 10^5$

|                                                               | b τ = 10 <sup>6</sup> |         | b τ = 2×10 <sup>8</sup> |         | b $\tau$ = 4×10 <sup>10</sup> |         |  |  |  |
|---------------------------------------------------------------|-----------------------|---------|-------------------------|---------|-------------------------------|---------|--|--|--|
|                                                               | (1 MHz, 1 sec)        |         | (3 MHz, 1 min)          |         | (10 MHz, 1 hour)              |         |  |  |  |
|                                                               | f = 10                | f = 100 | f = 10                  | f = 100 | f = 10                        | f = 100 |  |  |  |
|                                                               | MHz                   | MHz     | MHz                     | MHz     | MHz                           | MHz     |  |  |  |
| $A_e = 10^4 \text{ m}^2$ (~NDA)                               | 1                     | 16      | 3                       | 59      | 1 3                           | 220     |  |  |  |
| A <sub>e</sub> = 10 <sup>5</sup> m <sup>2</sup><br>(~UTR-2)   | 3                     | 50      | 11                      | 190     | 40                            | 710     |  |  |  |
| A <sub>e</sub> = 10 <sup>6</sup> m <sup>2</sup><br>(~LOFAR77) | 9                     | 160     | 33                      | 600     | 130                           | 2200    |  |  |  |

(distances in parsecs)

• Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$ 

• Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$ 

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary  $\mathcal{M}$  (scaling laws large planets better)  $\mathbb{M}$  f<sub>ce</sub> & radio flux

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000 ; Saar et al., 2004, Stevens, 2005]

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000 ; Saar et al., 2004, Stevens, 2005]

• Stellar wind modelling (spectral type spectral, activity, stellar rotation)

[Farrell et al., 1999]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000 ; Saar et al., 2004, Stevens, 2005]

• Stellar wind modelling (spectral type spectral, activity, stellar rotation)

[Farrell et al., 1999]

[Farrell et al., 1999 ; Griessmeier et al., 2004]

[Preusse et al., 2005]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

[Farrell et al., 1999]

[Farrell et al., 1999 ; Griessmeier et al., 2004]

[Preusse et al., 2005]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

### [Farrell et al., 1999]

[Farrell et al., 1999 ; Griessmeier et al., 2004]

[Preusse et al., 2005]

[Griessmeier et al., 2004 ; Stevens, 2005]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

• Role of (frequent) Coronal Mass Ejections

### [Farrell et al., 1999]

[Farrell et al., 1999 ; Griessmeier et al., 2004]

[Preusse et al., 2005]

[Griessmeier et al., 2004 ; Stevens, 2005]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

• Role of (frequent) Coronal Mass Ejections

[Farrell et al., 1999]

[Farrell et al., 1999; Griessmeier et al., 2004]

[Preusse et al., 2005]

[Griessmeier et al., 2004 ; Stevens, 2005]

[Khodachenko et al., 2006]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

- Role of (frequent) Coronal Mass Ejections
- Application of unipolar inductor model to white dwarfs systems

[Farrell et al., 1999]

[Farrell et al., 1999; Griessmeier et al., 2004]

[Preusse et al., 2005]

[Griessmeier et al., 2004 ; Stevens, 2005]

[Khodachenko et al., 2006]

- Possibilities for radio scintillations  $\Rightarrow$  burts  $P_{radio} \times 10^2$
- Estimates of exoplanetary *m* (scaling laws large planets better) I f<sub>ce</sub> & radio flux

• F<sub>x</sub> as wind strength estimator

[Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
- Time evolution of stellar wind and planetary radius (young systems better)

- Role of (frequent) Coronal Mass Ejections
- Application of unipolar inductor model to white dwarfs systems

[Farrell et al., 1999]

[Farrell et al., 1999; Griessmeier et al., 2004]

[Preusse et al., 2005]

[Griessmeier et al., 2004 ; Stevens, 2005]

[Khodachenko et al., 2006]

[Willes and Wu, 2004, 2005]

### • Predictions for the whole exoplanet census

➡ radio-kinetic extrapolation

[Lazio et al., 2004]



### • Predictions for the whole exoplanet census

### radio-kinetic extrapolation

[Lazio et al., 2004]



### radio-magnetic + CME extrapolations

[Griessmeier , Zarka, Spreeuw, 2007]



### • Predictions for the whole exoplanet census

### radio-kinetic extrapolation

[Lazio et al., 2004]



### radio-magnetic + CME extrapolations

[Griessmeier , Zarka, Spreeuw, 2007]



- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations
### An Old Idea ....

A Search for Extra-Solar Jovian Planets by 035 - 5Radio Techniques. W.F. YANTIS, U. Wash. and Goldendale Observatory, W.T. SULLIVAN, III, U. Wash. & W.C. ERICK-SON, U. Maryland. - We propose to search for the presence of planets associated with nearby stars through detection of Jovian like decametric radio bursts. Planetary bursts would be distinguished from possible stellar bursts by the presence of a high-frequency cutoff and possibly a modulation associated with the rotation of the planet. A search for such planetary radio bursts at 26.3 MHz is presently being conducted at The Clark Lake Radio Observatory. The sample includes 22 stars within 5 parsecs. The sensitivity limit is 10<sup>-26</sup> watts m<sup>-2</sup> Hz<sup>-1</sup>, about 1,000 times the signal expected from a strong Jovian burst. However, it is expected that the strength of any bursts will depend strongly on the planetary magnetic field and also possibly on the presence of a stellar wind. Initial observations exhibit several non-instrumental features which are under current study. Further results will be reported and monitoring observations are continuing.

[Yantis et al., BAAS, 1977]

### LF radio observations

| Instrument<br>Name & Location                                | Description                                                                        | Frequency<br>range<br>(MHz) | Effective<br>area<br>(m²)              | Beam                            | Polarisation             | Maximum<br>effective<br>sensitivity<br>(Jy) |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|---------------------------------|--------------------------|---------------------------------------------|
| NDA (Nançay<br>Decameter<br>Array), France                   | 2×72 helix-spiral<br>antennas<br>(rectangular arrays)                              | 10 - 100                    | ~2 × 4000                              | ~ 6° × 10°                      | 2 circular<br>→ 4 Stokes | ~10²                                        |
| VLA (Very Large<br>Array), New<br>Mexico, USA                | Interferometer : 27<br>parabolas × 25m Ø<br>(Y-shape array)                        | 74, 330,                    | ~13000                                 | <u>≥</u> 0.4'                   | 2 polar.                 | <10 <sup>-2</sup>                           |
| GMRT (Giant<br>Meterwave Radio<br>Telescope), Pune,<br>India | 30 parabolas × 45m<br>Ø (core + Y-shape<br>array)                                  | 150, 235,<br>               | ~30000                                 | 0.3'                            | 4 Stokes                 | <10 <sup>-3</sup>                           |
| UTR-2, Kharkov,<br>Ukraine                                   | 2040 dipoles<br>(T-shape array<br>1 km x 2 km)                                     | 7 - 35                      | ~140000                                | ~30' × 10°                      | 1 linear<br>polar. (EW)  | 10 <sup>0</sup>                             |
| LOFAR (Low<br>Frequency<br>Array), The<br>Netherlands        | Interferometer /<br>Phased arrays of<br>dipoles (core +<br>stations up to >100 km) | 10 - 240                    | ~10 <sup>6</sup> × (15/v) <sup>2</sup> | ~1.5"<br>×(100/v)<br>[v in MHz] | 4 Stokes                 | <10 <sup>-3</sup>                           |

 $1 \text{ UA à 1 pc} = 1 " \Rightarrow \text{no imagery}$ 

 $\rightarrow$  (1) detect a signal, (2) star or planet?

→ discriminate via emission polarization (circ./elliptical) + periodicity (orbital)

 $\rightarrow$  search for Jovian type bursts?

### • VLA

DECLINATION (B1950)

[Bastian et al., 2000 ; Farrell et al., 2003, 2004; Lazio & Farrell, 2007]

- f ~ 74 MHz
- target Tau Bootes
- epochs 1999 2003
- imaging







- f ~ 300 MHz
- target RX J0806+15 = binary white dwarf (+ unipolar induction ?)
- epochs 2005 & 2006
- transient ~0.1 mJy



### • GMRT

[Winterhalter et al., 2005 ; George and Stevens, 2007 ; ...]



- f ~ 153 MHz
- several targets (Tau Boo, Ups And...)
- epochs 2005 2007
- imaging + tied array mode
- sensitivity ~ a few mJy









### • UTR-2



X = center of phase

- f ~ 10-32 MHz
- a few 10's targets (hot Jupiters)
- epochs 1997-2000 & 2006-2008+
- Simultaneous ON/OFF (2 tied array beams)
- sensitivity ~1 Jy within (1 s x 5 MHz)
- t,f resolution (~ 10 msec x 5 kHz)





Fig. 5. Five-beam pattern of the north-south array





• **RFI** mitigation

### De-dispersion & temporal broadening



- Dispersion :  $\Delta t(sec) = 4150 [DM] / f^2$  (f in MHz)  $\rightarrow$  typically 1 - 100 sec
- Pulse temporal broadening :  $\tau_B \propto f^{-4.4}$  $\rightarrow$  typically 1 - 100 msec

### (Kolmogorov)

### • Parametric de-dispersion : pulsars

## **Example of pulse detection: strong signal**



### **Example of pulse detection: weak signal**





• Parametric de-dispersion : candidate exoplanets

### 55 Cnc (HD 75732)

### ON beam 2.0 1.5 -D M<sub>1.0</sub> 0.5 -0.0 OFF beam 2.0 1.5 -D M<sub>1.0</sub> . 0.5 -0.0 20 60 80 40 0 File No.





- A brief introduction about exoplanets
- Radio observations
- Theoretical predictions
  - planetary magnetospheric radio emissions
  - energy sources
  - scaling laws
  - extrapolation to exoplanets
- Ongoing observations
- Related & Future observations

• Super-flares ?

[Rubenstein & Schaefer, 2000 ; Schaefer et al., 2000]

• Super-flares ?

[Rubenstein & Schaefer, 2000 ; Schaefer et al., 2000]

0.0

2ed K Residuals 0.03

Integra

• Chromospheric hot spot (optical) on HD179949 +  $\upsilon$  And







[Shkolnik et al. 2003, 2004, 2005]



• Super-flares ?

[Rubenstein & Schaefer, 2000 ; Schaefer et al., 2000]

• Chromospheric hot spot (optical) on HD179949 +  $\upsilon$  And





- unipolar or dipolar interaction ?
- → hot spot 60° ahead of sub-planetary point (P=3.1d)

-> Ok wrt "backwards" Alfén waves propagation in the stellar wind [Preusse et al., 2006]

⇒  $P_{spot}$  > 10<sup>19</sup> W but  $P_d = 0.15 \times 10^{15} \times \pi R_J^2$  W → energy crisis ?

 $\rightarrow$  larger obstacle or wind strength + stellar B ? (F<sub>X</sub> ~10× solar)

[Shkolnik et al. 2003, 2004, 2005]



tellar wind [Preusse et al., 2006] crisis ? × solar)

[Shkolnik et al., 2005 ; Zarka, 2007]

### ESPaDOnS spectropolarimeter @ CFHT

• Magnetic field of Tau Bootes

[Catala et al., 2007]











- 30-250 MHz
- Epoch 2009+ (solar max. !)
- Sensitivity ~ mJy
- Imaging + tied array modes
- Built-in RFI mitigation & ionospheric calibration

Exoplanet sea Candidate exo

- Candidate exoplanets + all close-by stars
- Exoplanet search part of "Transients" KP



[Zarka, 2004]





- High frequencies (~ 0.2-20 GHz)
- ≥2015-20
- Sensitivity down to  $\mu Jy$  ?





- High frequencies (~ 0.2-20 GHz)
- 2015-20
- Sensitivity down to  $\mu Jy$ ?

**W** Unipolar inductor systems (e.g. hot Earths around White dwarfs)



[Willes & Wu, 2004, 2005]



[Willes & Wu, 2004, 2005]







saturated loss-cone driven cyclotron-maser emission





- High frequencies (0.2-20 GHz)
- 2015-20
- Sensitivity down to  $\mu Jy$ ?
- **W** Unipolar inductor systems (e.g. hot Earths around White dwarfs)





- High frequencies (0.2-20 GHz)
- 2015-20
- Sensitivity down to  $\mu Jy$ ?
- **W** Unipolar inductor systems (e.g. hot Earths around White dwarfs)
- **W** Detection of artificial emissions?





- High frequencies (0.2-20 GHz)
- 2015-20
- Sensitivity down to  $\mu Jy$ ?
- **W** Unipolar inductor systems (e.g. hot Earths around White dwarfs)
- **W** Detection of artificial emissions?
- X Astrometry (planets around M dwarfs)



Astrometric displacement of the Sun due to Jupiter as seen from 10 parsecs.







- 2010
- Sensitivity ~ 0.1-1 mJy

Probe molecular lines in protoplanetary clouds Planetary formation (cf. next talk)

### • Very high frequencies (100 - >650 GHz)

Objectives for the Search for Exoplanets magnetospheric radio emissions

- $\rightarrow$  Direct detection (planet-star distinction via
  - polarization & periodicity)
- → Planetary rotation period
- $\rightarrow$  Measurement of B  $\Rightarrow$  contraints on scaling laws &
  - internal structure models
- $\rightarrow$  Comparative magnetospheric physics (star-planet interactions)
- $\rightarrow$  Discovery tool (search for more planets)?