

Black Holes in the local Universe

This talk:

What do we know about evolution of SMBH population (mass function, accretion rates, etc.)
A lot! (up to z-4-5)
Evolution of mass and accretion rate density
Constraints on radiative efficiency and avg. BH spin
Anti-hierarchical evolution (downsizing)
Radiative vs. kinetic energy output
Frontiers: The first Black holes
Eddington or Super-Eddington?
The role of mergers
The first seeds

Accretion efficiency, Eddington limits

•In order to get close (*R*), a particle of mass *m* must get rid of energy $F_{ibb} = GM_{BH}m/R$ •Efficiency of accretion in liberating rest mass energy: $\eta = E_{ill}/mc^2 = R_g/2R_{in}$, with $R_g = GM_{BH}/c^2$ GR $\rightarrow 0.06 < \eta(a) < 0.42$ •BHs grow by accreting mass: Power_{released} = [η /(1- η)](dM_{BH}/dUc² •Self-regulating luminosity $L_{Edd} = 4\pi GMcm_p/\sigma$ 1. $L_{Edd,es} = 1.3 \times 10^{38} (M_{BH}/M_{um})$ [XRB, AGN] 2. $L_{Edd,v} = 8 \times 10^{53}$ (E $\sqrt{50}$ MeV)⁻²(M_{BH}/M_{um})[GRB]

fficiency	
radiative efficiency	accretion efficiency (BH spin)
$\epsilon \equiv \epsilon(a$	$\dot{m},\dot{m},\dot{m}_{ m cr})=\eta(a)f(\dot{m},\dot{m}_{ m cr})$
	$0.06 \leq \eta(a) \leq 0.42$ Maximally Spinning BH
$f(\dot{m},\dot{m}_{o})$	$_{ m er}) = egin{cases} 1, & \dot{m} \geq \dot{m}_{ m er} \ \dot{m}/\dot{m}_{ m er}, & \dot{m} < \dot{m}_{ m er} \end{cases}$
Determine	d by the complex physics of gas accretion

Convergence in local mass density estimates

Table 3. Modification of Table 1. Here, the local SMBH mass density estimates have been fully corrected for their dependences on h_{a} , and transformation $M_{B} = 70$ (km s⁻¹) M_{PC}^{-1} . While scores estimates of p_{AB} approx not to have charged from Table 1, case shall not to that the quoted inquencions on h may have charged. Then Table 1 were first strain to have the charged from Table 1, case shall not only that the quoted score have the star (h) is used to denote that \star more complicated dependences on h may have charged. Then Table 1 were first score to the star of the star of h stars and massimiliated dependence on h may also we charged. Then Table 1 were first stars and the star of the stars and the star of h stars that the stars that h stars that the star of h stars that the stars that h s

Study	Method	$p_{bb,0}$ (E/S0)	Phb.0 (Sp)	$\rho_{\rm bb,0}$ (total)	
		$10^4 M_{\odot} \text{ Mpc}^{-2}$	$10^{8} M_{\odot} Mpc^{-3}$	$10^8 M_{\odot} Mpc^{-3}$	
Graham et al. (2007)	M _{bb} n	$(3.46 \pm 1.16)h_{70}^2$	$(0.95 \pm 0.49)h_{70}^2$	$(4.41 \pm 1.67)h_{70}^2$	2
Wyithe (2006)	$M_{\rm hb} \sigma$			$(1.98 \pm 0.38)h_{70}^2$	
Fukugita & Peebles (2004)	Puphereoid	$(3.4^{+2.4}_{-1.7})h_{70}$	$(1.7^{+1.7}_{-0.8})h_{70}$	$(5.1^{+3.3}_{-1.9})h_{70}$	v
Marconi et al. (2004)	M_{bb} (L, σ)	$3.3h_{70}^{0.74}f(h)$	$1.3h_{10}^{0.74}f(h)$	$(4.6^{+1.9}_{-1.6})h^{0.74}_{70}f(h)$	1
Shankar et al. (2004)	$M_{bb} L$	$(4.3^{+1.3}_{-1.1})h_{10}^{0.8}f(h)$	$(1.5^{+0.7}_{-0.7})h^{0.3}_{-0.7}f(h)$	$(\delta.9^{+1.8}_{-1.8})h_{70}^{0.8}f(h)$	~
Shankar et al. (2004)	$M_{\rm bb} \sigma$	$(3.4^{+1.1}_{-0.7})h_{70}^{2}$	(1.4 ^{+0.8})/r ² m	$(4.8^{+1.2}_{-0.3})h_{70}^{2}$	~
McLure & Dunlop (2004)	$M_{\rm bh}$ L	$(4.8 \pm 0.7)h_{70}^{0.8}f(h)$			Ľ
Wyithe & Losh (2003)	$M_{\rm bh} \sigma$			$(2.1^{+2.4}_{-1.2})h^{2}_{79}$	
Aller & Richstone (2002)	$M_{\rm hb} \sigma$	$(4.5 \pm 1.5)h_{70}^{0.59}f(h)$	$(1.4 \pm 1.3)h_{70}^{0.20}f(h)$	$(5.9 \pm 2.0)h_{70}^{0.20}f(h)$	2
Yu & Tremaine (2002)	$M_{\rm hb} \sigma$	$(2.0 \pm 0.2)h_{70}^3$	$(0.9 \pm 0.2)h_{70}^2$	$(2.9 \pm 0.4)h^2_{70}$	
Marritt & Ferrarese (2001)	Puphereid			4.6h70	
Salucci et al. (1999)	Pupherenid	6.2h ² 70	$2.0h_{70}^2$	8.2h ²	

Graham and Driver (2007)

Mergers Only	Mergers+disc accretion	Mergers+chaotic accretion
80 04 05 05 05 05 05 05 05 05 05 05	0.6 CCC 0.4 CCC 0.6 CCCC 0.8 CCCCC 0.8 CCCCC 0.8 CCCCCC 0.8 CCCCCC 0.8 CCCCCCC 0.8 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$\begin{array}{c} 35\\ 4\\ \\ 8\\ \\ 8\\ \\ 8\\ \\ 8\\ \\ 8\\ \\ 8\\ \\ 8\\$
		Berti and Volonteri (2008)

SMBH spin evolution: accretion vs. mergers

Unveiling the growth of SMBH

- 1. BH mass can only increase*
- 2. BHs do not transform into something else as they grow**
- grow**
 BHs are like teenagers: they clearly let us know when they grow up (AGN as signposts of BH growth)

AGN downsizing: changing accretion modes

- SMBH must accrete at lower (average) rates at later times
- Accretion theory (and observations of X-ray Binaries) indicate that
- The energy output of an accreting BH depends crucially on its accretion rate
- Low-accretion rate systems tend to be "jet dominated"
- In the recent Cosmology jargon: Quasar mode vs. Radio mode (explosive vs. gentle)

What is the "radio mode" of AGN?

- The energy source that counterbalance cooling in the cores of groups and clusters. Prevents overproduction of massive galaxies at late times (a FEEDBACK mode; Croton et al. 2006; Bower et al. 2006)
- CANNOT be associated to QSOs: their number density declines too fast
- A FEEDING mode (hot gas vs. cold gas, Hardcastle et al. 2007)
- HERE: The physical state of ALL black holes at low accretion rate ~less than a few % of the Eddington rate (an ACCRETION mode)

Black Holes mass function evolution

The high	est redshift QSOs: th	e time problem
108	0.057 0.10	
107		PopIII remnants seeds
104	1/	(100 000)</td
100	0.15	
W 104	0.19	N BOOK
	//	Massive seeds
102	0.32	
10 ¹	0.42	
1 El		Shapiro (2005)
	10 20 30 Z _i	30

Conclusions: SMBH evolution at z<4

- SMBH grow with a broad accretion rate distribution
- Most of SMBH growth occurred in radiatively efficient episodes of accretion.
- The anti-hierarchical trend is clearly seen in the low-z evolution of SMBH mass function. Reversal at higher z?
- Feedback from "Low-luminosity AGN" are most likely dominated by kinetic energy
- The efficiency with which growing black holes convert mass into mechanical energy is 0.3-0.5% (but strongly dependent on BH mass and redshift).

Open questions: the first Black holes

- What typical mass (where the peak of Mass Function)
- PopIII star remnants vs. direct collapse
- What growth mode:
- Standard accretion vs. chaotic accretion vs. super-critical accretion
- What is the mass of typical host halo
 Correlation function
 Early M-sigma?

