Evolution of AGN - Optical View

Bonn, 30 Sep 2004

Christian Wolf, Oxford

Discovery of Quasars

• Schmidt 1968,1970

- Sharp decline from z=2 to z=0
- Visible in samples of 20 objects
- Radio and optical selection
- V/V_{max} test

DISTRIBUTION OF REDSHIFTS OF SANDAGE-LUYTEN QSOS AND 3CR QSSs OF APPROXIMATE OPTICAL MAGNI-TUDE 18 (-30.0 log $< f_{opt} < -29.6$)

TABLE 1

log z	QSOs	3CR	Adopted Fractional
+0.2 to +0.4	5	3	0.20
0.0 to +0.2	7	6	0.35
-0.2 to 0.0	2	6	0.20
-0.4 to -0.2	3	2	0.15
-0.6 to -0.4	õ	ī	0.05
-0.8 to -0.6	ž	ō	0.05
Unknown	ī	ĭ	0.00
Total	20	19	1.00

Observational Definition

- Optical perspective:
 AGN =
 - Non-stellar continuum radiation (SF may be occurring in vicinity, common trigger?)
 - $-M_B$ = -10...-30 (QSO = high-L, not obscured)
- Working hypothesis:
 AGN =
 - Powered by accretion onto massive Black Holes
 - Live in host galaxies

5 Years Ago - LF Evolution

- Boyle, Shanks & Peterson 1988:
- Warren, Hewitt & Osmer 1994:
- Schmidt, Schneider & Gunn 1995:

PLE complicated description linear function

5 Years Ago - Ψ and Samples

- Rise & Fall established
- High-z debate
- Selection, details unclear

- Samples cover narrow L range
- L strongly redshift-dependent
- Bound to "see" PLE

Recent Surveys

Survey	Redshift	Limit	Selection	Sample
HES	0.03.2	B<17	obj. prism	~400
2QZ	0.02.2	B<21	phot. plates	~23,000
SDSS	0.05.4	I <20	ugriz	~16,000
COMBO-17	0.56.0	R<24	17 bands	~300
BTC40	4.86.0	I <22	BVIz	2
Steidel et al.	~3.0	R<25.5	Ly Break	11

Quasar Photometric Redshifts

• SDSS ugriz

- $-\sigma_z \sim 0.2$ (templates)
 - Richards et al. 2001
- $-\sigma_z \sim 0.1$ (NN)
 - Budavari et al. 2001
- COMBO-17
 - $\sigma_z/(1+z) \sim 0.015$ (templates)

• Wolf et al. 1999-2004

Results - Evolution of Ψ

- HES Wisotzki et al. 2000
- 2QZ Boyle et al. 2000, Croom et al. 2004
- SDSS Fan et al. 2001
- COMBO-17 Wolf et al. 2003

Results - LF shape 1/6

• HES

- Wisotzki 2000
- Some LF
 curvature
- No L* seen at low redshift

Results - LF shape 2/6

• 2QZ

- Boyle et al. 2000
- Croom et al. 2004
- Broken power law
- PLE not great fit, but satisfactory
- $L^* \sim e^{6.15\tau}$

Results - LF shape 3/6

SDSS

- Fan et al. 2001
- Linear LF due to narrow L range
- No L* constraints
- Slope flatter here than in 2QZ

Results - LF shape 4/6

- COMBO-17
 - Wolf et al.2003
 - Some LF
 curvature
 - No L* seen at faint L, may be brighter

Results - LF shape 5/6

BTC40

 Monier et al. 2002
 TWO objects

Results - LF shape 6/6

- Steidel et al.
 - Hunt et al. 2004
 - Flat faint end
 - Hunt et al. + WHO94
 see clear L* knee

Black:
Blue:
Green
Red:

Hunt, Steidel et al. 2004 Fan et al. (2001), evolved to z=3 Warren, Hewitt & Osmer 1994 COMBO-17 (2003)

Results - LF shape 6/6

Steidel et al. *Hunt et al. 2004*Flat faint end
COMBO-17 + SDSS
No L* knee

Black:
Blue:
Green
Red:

Hunt, Steidel et al. 2004 Fan et al. (2001), evolved to z=3 Warren, Hewitt & Osmer 1994 COMBO-17 (2003)

Results - Peak Redshift z(L)

- COMBO-17

 Faintest
- HES

 Brightest
- See X-rays

 Cowie et al.,
 Steffen et al.
 2003, low-L_x
 peak at z~0.75

Results - Red(dened) QSOs?

- Are we missing a whole population of red quasars ???
 - Dust reddening
 - Red continuum
 - Red synchrotron component

Results - Red(dened) QSOs?

- Study continuum properties carefully
 - SDSS z = 0.0...2.2, plus 2MASS
 - Group ~5000 QSOs into six templates
 - Richards et al. 2003, Hopkins et al. 2004

Results - Red(dened) QSOs?

- SDSS+2MASS continuum properties – Intrinsic slopes $\alpha = [-0.75, -0.25]$
 - Plus SMC-like dust reddening at QSO z
 - Continuum and BLR reddened (not NLR!)
 - $-\langle E_{B-V} \rangle = 0.03$, sensitive to $E_{B-V} < 0.5$
 - -2% with $E_{B-V} > 0.1$
 - A total of 10% are lost from SDSS sample due to extinction (NOT reddening!)

Optically obscured AGN

• 5 Years ago

- Low-L type-II AGN known for decades (Seyfert-2)
- High-L type-II QSOs ??
 - Candidate at z=0.44 most powerful IRAS source (Kleinmann et al. 1988)
- Recently
 - X-ray evidence from BeppoSAX
 - Franceschini et al. 2000
 - Several QSO-II from Chandra, XMM
 - Up to z=3.7 (*Norman et al. 2002*)
 - Not the dominating population at high L

Optically obscured AGN

- Zakamska et al. 2003, 2004
 - Serendipitous sample from SDSS spectroscopy
 - z=0.3...0.8
 - 150 QSO-II with L_{OIII} > 3 x 10^8 L_{sol}
 - Optical+NIR: host galaxy continuum + NLR
 - MIR/FIR- luminous and hard X-ray colours

Spectral Index Evolution?

- Pentericci et al. 2003
 45 QSOs, z=3.6...5
 - SDSS data + JHK photometry
 - $\alpha = -0.57 \pm 0.33$ - NO EVOLUTION
 - compared to z~1

Evolution of Emission Lines?

- Croom et al. 2002, Dietrich et al. 2002
 - Various Baldwin effects =
 (anti-) correlation of line-EW and L
 - NO EVOLUTION of line-EW's with redshift
- Corbett et al. 2003
 - If BLR in Keplerian orbits and $r_{BLR} \sim L_{QSO}^{0.7}$
 - Then M_{BH} ~L_{QSO}, and NO EVOLUTION

AGN Host Galaxies

 Dunlop et al. 2003 z<0.2 M_V<-23.5 Kukula et al. 2001 z=0.9...1.9 M_V=-25...24

Normal giant E galaxies, Kormendy relation normal

- Kauffmann et al. 2003 z<0.3 type-II
 - Normal early-type galaxies
 - Low-L: normal red colour
 - Medium-L: excess of blue star light w.r.t. non-AGN
- Jahnke et al. 2004 z < 0.2 $M_V = -24...-21$ Sanchez et al. 2004 z = 0.5...1.1 $M_V = -24...-20$
 - Normal early-types + some disks
 - Early-types: excess of blue star light w.r.t. non-AGN, but not strong starburst

Current Challenges

• Observations

- Map QSO L-z plane completely (optical and X-ray)
- Push type-II surveys to higher redshift
- Analysis
 - z_{max} (L), changing shape of QSO-LF
 - Evolution in obscuration?
 - Measure accretion rates if low, why? (E, M, dM/dt)
- Interpretation
 - Relating observed to physical evolution
 - Self-consistent, accretion & BH mass function

Summary

- QSO-LF: No simple model and parameterization
- Cosmic Downsizing: low-L peaks at low-z, hi-L at hi-z
- Type-I population completely observed
- No spectral evolution
- Type-II catching up, still work to do (high-z!)
- Type-II fraction high at low-L, low at high-L
- Host galaxies mostly large E's (+ extra young stars)
- Interpretation of physical evolution still challenging