Connection between the X-ray, UV and optical emission line regions of AGNs

L. Č. Popović

Astronomical Observatory, Belgrade, Serbia Astrophysicalisches Institut Potsdam, Potsdam, Germany

Spectral lines

- X-ray Fe K-alpha line
- Broad UV lines Ly-alpha, C IV, CIII], Mg II
- Broad optical lines Balmer lines

X-ray

Nandra et al. 1997, ApJ, 447,602; 488,L91

UV-lines (Wills et al. 1999, ApJ, 515, L53)

Some correlations

- Narrower optical lines (H-beta) => steeper slopes of X-ray continua (Boller et al. 1996, A&A, 305, 53)
- H-beta narrower =>[OIII] emission decreases => higher NV/CIV (Wills et al. 1999, ApJ, 515, L53)
- Higher L(2-10 keV) => higher L[OIII] (Kramer et al. 2004, ApJ, 607, 794)

The questions

- Is there any similarity between line shapes (Fe K, UV and Balmer lines)?
- =>
- Different physics and kinematics of line emitting regions?
- Stratification of an emitting region?

THE MODEL

Some problems:

- Low resolution in the X-ray
- Satellite lines in the UV and Optical
- Different optical depth of UV and optical lines

Low resolution in the X-ray (Sulentic et al. 1998, ApJ, 501, 54)

Satellite lines (3C 273)

The aims

- For a sample of AGNs which Balmer lines can be modeled by the two-component model (accretion disk + spherical emitting region; Popovic et al. 2002, A&A, 390, 473; Popovic et al. 2003, ApJ, 599, 185; Popovic et al. 2004, A&A, 423, 909) find the kinematics of UV and Fe K line regions (comparison of geometries)
- Physical properties of optical BLR (Popovic 2003, ApJ, 599, 140) connect with Fe K and UV emitting region

NGC 3516 – an example

- Fe K line disk emission + core line component (Nandra et al. 1999, ApJ, 523, L17; Turner et al. 2002, 574, L123)
- UV lines two-component model: disk + spherical emitting region
- Balmer lines two-component model (Popovic et al. 2002, A&A, 390, 473)

Fe K line (Turner et al. 2004)

Ly-alpha (Popovic 2004, this conference)

CIV line (Popovic 2004)

Mg II line (Popovic 2004)

Some ideas

- Inner part several tens of Rg => Fe K, i~0-19degrees (Nandra 1999)
- Several 100s of Rg to several 1000s Rg => broad UV/optical (i~11 degrees)
- The core component of the Fe K and UV/optical lines?

Velocity correlation between the disc and line core componets (Popovic et al. 2004)

Stratification in BLR (Popovic et al. 2003, ApJ, 599, 185) – III Zw 2 (i~12 degree)

TABLE 1 Parameters of the Disk							
Line	z _{disk}	σ (km s ⁻¹)	$R_{\rm inn}(R_g)$	$R_{\rm out}(R_g)$	$z_{ m G}$	$W_{\rm G}$ (km s ⁻¹)	$F_D/F_{ m G}$
Lyα	-800	850	200	900	-20	1280	1.11
Мg пλ2789	-350	920	300	1000	-30	1100	1.86
$\tilde{\mathrm{H}eta}$	-600	920	400	1300	-130	1100	3.14
Ηα	-600	850	450	1300	-120	1170	1.52
$\langle AV \rangle$	-600	890	400	1200	-120	1170	1.72

NOTES.—Explanation of symbols: z_{disk} is the shift, σ is the Gaussian broadening term from disk indicating the random velocity in disk, R_{inn} is the inner radius, and R_{out} is the outer radius. The z_G and W_G represent the parameters of the Gaussian component. $\langle AV \rangle$ is an averaged profile (see Fig. 10b). F_D/F_G represents the ratio of the relative disk and Gaussian fluxes.

Conclusions

- Very similar geometry in all three regions:
 1) Disk component
 - In some AGNs the disk emission is present also in the UV/optical emission (line wings)
 - The UV/optical lines are probably emitted by the outer part of the accretion disk, while the Fe K is coming from the inner part
- 2) Core component
 - Core line component of the Fe K and UV/optical lines is emitted out of the disk

Alexander von Humboldt

Alexander von Humboldt Foundation.

http://www.humboldt-foundation