Power-unification of weakly accreting black

Max-Planck-Institut
far
Radioastronomie

Elmar Kording &
Heino Falcke




Thermally dominated state

keV (keV/cm?® s keV)

. Thin disk nearly up to the BH

. Disk dominates overall
luminosity

. Often feeble or non-existent jet
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The "non-thermally” dominated state
aka low-hard’
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Jet may dominate the overall luminosity Markoff, Falcke, Fender 2001

(radio!, NIR, X-rays!?)

Corona only models often used!!!



Jet and Disk scaling
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Power Unification of Compact Objects
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Main parameters: orientation, BH mass, accretion power

Classification through broadband SED properties:
Lines, “big blue bump”, ADAF signatures

All jet dominated sources should be described with the same model.



Jet Model

. Hydrodynamical analytical model

— Jet launching parameterized as “black box”
— Scale invariant geometry

— Assumes equipartion of energy in magnetic fields, relativistic
particles and turbulent plasma

— No radiation losses included
— Blandford & Konigl (1979), Falcke & Biermann (1995), ...

. New approaches

— Parameterization for black hole mass and accretion power scaling
— Dependence of the dominant emission process on the parameters
— Possible guenching mechanisms



Steady’ jet
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The Fundamental Plane of Accreting
emission

t Scaling laws for jets predict for
\ the radio flux: 715
' SRadio ¢ M /

For the turnover frequency (SSA):

For X-ray emission (if below cutoff)
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Falcke & Biermann 1995, Markoff et al. 2003, Falcke, Kording, Markoff (2004);
Fundamental plane see also Merloni et al. 2003, Heinz et al. 2002
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1 » Fitted power law index:
1.41

1 » Predicted value: 1.38!
| o SSC for X-rays

- — Coefficient > 2
1 X-rays from disk:
S .3 Jet/disk coupling

z Radio Flux (mdy) always 1!
Corbel et al 2003, Markoff et al. 2003, Gallo et al.2003



Observing the synchrotron peak

* Note: Spectrum may
(will) shift with mass!

— X-rays # X-rays
e Synchrotron cutoff for

High peaked BL Lacs
near X-rays

 LBLs cut off before!

|

Observe at frequencies on
the synchrotron peak!

& Interpolate Maraschi et al.

Observing frequencies: FRI,BL Lac : Optical; XRB, LLAGN : X-ray



Uncorrected Radio/ X-ray correlation
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Radio/Xray: XRB to AGN!
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Compare Merloni, Heinz et al. 2003



Further tests

. Importance of jets

- X-ray variability of XRBs can be explained by a
pivoting power law (Kording & Falcke 2004)

. Pivoting crucial, not the time lags due to successive
Comptonization

— Reflection components can be obtained with jet
models as well (Markoff & Nowak 2004)



Towards higher accretlon rates

Why are jets of stellar black holes In the hlgh state quenched or
Instable?

\NNNS "y
. Energy budget
. Irradiation of jet: Quenching by Irradiation?

— Disk external Compton
— External Compton from scattered photons



Dominant Emission Process

. Variable disk efficiency

0 — Above critical accretion
< rate: Standard disk
=2 — Below: inefficient disk
D
e Synchrotron . Exte_rnal C_ompton
Self dominates: the whole
Compton jet may get quenched!
. > — Other possibility:
M., Lg M/M¢cyy 0 Quenching by MHD

(but FR 11 RG!)

Low hard High soft



Conclusions

. The jetis an important feature of both XRBs and AGN
. AGN and XRBs can be unified:

- Standard orientation dependent unification

— Power + black hole mass unification

. Fundamental Plane of accreting black holes
. Scale invariant geometry tested

. Scaling laws for jets can be established

-~ Dominant emission process depends on accretion rate +
iIsotropic radiation field

- External Compton may provide a quenching mechanism
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