Line-driven winds near compact objects

Dorodnitsyn A.

Space Research Institute

Moscow

Sources of acceleration

• Magnetic driving

Jets (collimated) and bipolar(less collimated) outflows. •nuclei of active galaxies •galactic X-ray binaries •Protostars

High Lorents factors high degree of collimation

In fact very little is known about acctual B in accretion disks

• Radiation driving

"Natural" and almost inevitable mechanism for high luminosity disks

Overionization by the central source rises the problem of confinement

• NALs –

- Narrow absorption line region
- BALs
 - Broad absorption line region

- BELs
 - Broad emission region

AGN

- Narrow absorption line region seen in UV and X-ray spectra ~1000 km/s
- The blue-shifted broad absorption lines the most convincing evidence of outflows with $V^{\infty} = 0.2c$
- Broad emission lines, UV—indicate outflows with velocities several thousand km/s

Radiationally accelerated winds

• O-type stars

theory of Castor, Abbott, Klein (1975)

- pressure in lines
- Sobolev effect
- WR-stars ?
- Evolved massive stars
 - absorption of the radiation flux in continuum
 - all types of opacity
 - true absorption
 - lines
 - Dust
- Line-driven winds from accretion disks

. . .

Arav et al, (1994, 2002)
Murray at al. (1995) (a quasi-1D model)
Proga et al. (1998,2000) (the 2D calculations of the accretion disk powered winds)
Stevens & Kallman (1990) (winds from massive X-ray binaries , together with ionizing effects of the radiation from the central source)

A photon, emitted elsewhere in the "photosphere, may become resonant with the line transition downstream

Since the line has a thermal width, the absorption takes place in a resonant layer of the typical size of about Sobolev length

Gravitationally Exposed Flow

The key ingredient of the standard theory is that the optical depth (measured on the lab. frequency of the line transition) can be expressed as a function of the velocity gradient in the flow.

The same is true in the case when a photon, emitted somewhere deeply in the potential well, will become resonant with the line absorption both due to velocity diference and due to GR effect of redshifting.

Dorodnitsyn, A.V. 2003, *MNRAS*, 339, 569

Dorodnitsyn A. & Novikov I., ApJ, submitted astro-ph/0409363

- To calculate the radiation pressure force taking into account gravitational redshifting
- What is the relative impact of gravitational redshifting in comparison with standard case

- only very simple input conditions are chosen
 - no ionization,
 - Spherical symmetry
 - CAK parameterization law

We may hope that approximately the same difference will hold between GEF and CAK cases in more realistic calculations

GEF-theory

- Spherically-symmetric
- Background Schwarzschild metric
- Nonrelativistic, v/c terms retained only, Sobolev theory of the radiation transfer in lines

Radiation + Gravity

$$T^{\alpha\beta} = (P+\rho)u^{\alpha}u^{\beta} + Pg^{\alpha\beta}$$
$$\rho = \rho_0(1+E_i),$$
$$\rho_0 = m_b n_b$$
matter

Stress-energy tensor for the perfect gas total mass-energy densitybarionic rest-mass density E_i enternal energy of the perfect gas

 $T^{\alpha\beta}_{;\beta} - G^{\alpha} = 0$ Matter vs. radiation

Equation of motion

 (Euler equation)
 Mihalas & Mihalas (1984)
 and references therein

 $(n_b u^{\alpha})_{\alpha} = 0$ Matter only

Continuity equation

Such a simple split of radiation and matter is possible only if radiation and outflowing matter have no "weight". It is justified by our assumption of the background Schwarzschild metric

Basic equations

$$\frac{P+\rho}{h}\left(Vh\frac{dV}{dr} + \frac{M}{r^2}\right) + \frac{dP}{dr} - \frac{1}{h}G^1 = 0$$

Continuity equation

$$\rho_0 V r^2 \sqrt{h} = \frac{\dot{M}}{4\pi}$$

Optical depth with gravitational + Doppler redshifting

$$\tau_l = \chi_l \, l_{GEF},$$

- Modified Sobolev scale

$$w = \frac{d}{dr} \sqrt{h}$$
~ acceleration of the particle
that was initially at rest

$$l_{GEF} = \frac{V_{th}}{\sqrt{h}} \approx \frac{V_{th}}{\frac{dV}{dr} + cw} \approx \frac{V_{th}}{\frac{dV}{dr} + \frac{1}{c}\frac{d\phi}{dr}}$$

A nonlinear character of the equation of motion

$$\mathbf{F} = \mathbf{v}\frac{d\mathbf{v}}{dr} + \frac{1}{\rho}\frac{dP}{dr} + \frac{d\phi}{dr} - \frac{L\sigma_e}{4\pi r^2 c} - \frac{L\sigma_e k}{4\pi r^2 c} \left(\frac{4\pi}{|\dot{M}|}\right) \left[\mathbf{v}r^2\left(\frac{d\mathbf{v}}{dr} + \frac{1}{c}\frac{d\phi}{dr}\right)\right]^{\alpha}$$
nonlinearity

nonlinear coupling

 $0 < \alpha < 1$

Towards a solution

$$F(p,\mathbf{v'},\mathbf{r})=0$$

Equation of motion

$$\left(\frac{\partial F}{\partial r}\right)_{cr} = 0$$

Singularity condition

$$\left(\frac{\partial F}{\partial r}\right)_{cr} + \mathbf{v}_{cr}' \left(\frac{\partial F}{\partial \mathbf{v}'}\right)_{cr} = 0$$

Regularity condition

Gravitationally Exposed Line-driven Flow

r/rg

Model	x _{c,GEF}	$x_{c,CAK} - x_{c,GEF}$	$\frac{V^{\infty}_{GEF} - V^{\infty}_{CAK}}{V^{\infty}_{CAK}}$
S1	15	7.47	0.57
S2	20	9.95	0.51
\$3	50	25	0.37
S4	100	50	0.2

 $x_c = \frac{r_c}{r_g}$ - position of the critical point

Density distribution in the wind.

Mutliband Approach to AGN

Concluding Remarks

- A theory of winds that takes into account effects of strong gravitational fields has been developed
- It is demonstrated that a regime of the "GRAVITATIONALLY EXPOSED FLOW" rather than a standard linedriven wind (CAK-theory) is developed.
- The comparison of both regimes shows that it is of up to 40% increase of the efficiency of acceleration may be obtained.

Dorodnitsyn, A.V. 2003, MNRAS, 339, 569 Dorodnitsyn A.V. & Novikov I.D., ApJ, submitted