

2nd ERIS, Bonn, September 2007

Max-Planck-Institut für Radioastronomie

Planning an interferometer observation

T. Venturi Istituto di Radioastronomia, Bologna, INAF

tventuri@ira.inaf.it

Outline

- I. Planning an experiment/Preparing a proposal
- II. Proposal submission
- III. Schedule preparation
- IV. After the observations

I. Planning an experiment Preparing a proposal

The scientific goal must be clear in mind!!!

1) Type of experiment

- Is it <u>continuum</u> or <u>spectral line</u> (or continnum with spectral line mode of observation)?
- If it is spectral line, which is the <u>frequency of the line</u>? And the <u>distance</u> of the target source? (presentation by R. Bewskic on Friday)
- Is it single or dual *polarization*?

2) Resolution and angular scales

- How compact/extended is the target source?
- How big is the structure you want to image?

3) Field of view

 How large is the field of view needed? Is <u>spectral line</u> <u>mode</u> necessary to prevent bandwidth smearing? Is one pointing enough or is <u>mosacing</u> necessary?

4) Frequency required

- Just one frequency or more? If more, should they be simultaneous?
- Frequency agility necessary?

5) Brightness of the target source

$${
m rms} \propto (\Delta
u \Delta t)^{-1/2}$$

- Which sensitivity is needed to image the weakest features in our target source?

- How long is the integration time needed?
- Which bandwidth is necessary?

1 + 2 + 3 + 4 +5 => Which telescopes/arrays are suitable?

The selection of the telescopes is crucial for VLBI observations (collecting area, u-v coverage ...)

Consult the EVN User Guide at www.evlbi.org/user_guide/user_guide.html

EVN+Sh+Ur, 18 cm δ =60°

EVN, 18 cm δ =60°

EVN+Sh+Ur, 18 cm, δ =20°

EVN+VLBA, 18 cm, δ =20°

EVN+Sh+Ur+Hh, 18 cm, δ =-20°

... to summarize

- 1) Type of experiment (continuum, spectral line, polarization)
- 2) Resolution, field of view , largest angular scales
- 3) Frequency
- 4) Brightness sensitivity
- 5) and the source location in the sky (declination)

... lead to the choice of

- a) the array (if VLBI => choice of the telescopes)
- b) observing setup
- c) bandwidth/filters
- d) total time on-source

Southern Cluster of galaxies A3562

Parsec scale resolution needed

EVN: http://www.evlbi.org VLBA: http://www.vlba.nrao.edu

Standard: 1.4 – 22 GHz Fewer stations at 327 MHz, 610 MHz

43 GHz and higher (VLBA, GMVA)

LBA: http://www.atnf.csiro.au/vlbi/

e-VLBI in Europe

Sub-arcsec scale resolution needed => MERLIN

http://www.merlin.ac.uk

EVN+MERLIN observations @ 1.4GHz, 5 GHz, 22 GHz eMERLIN & Legacy Programs

LAT ~ 52°

Maximum distance between the 6 telescopes 217 km

Observations in the frequency range 151 MHz - 24 GHz

Resolution ~ 50 mas at 5 GHz

Arcsec to arcmin resolution => Very Large Array (NM, USA)

http://www.vla.nrao.edu

Receivers Available at the VLA								
	4 Band	P Band	L Band	C Band	X Band	U Band	K Band	Q Band
Frequency (GHz)	0.073-0.0745	0.30-0.34	1.34-1.73	4.5-5.0	8.0-8.8	14.4-15.4	22-24	40-50
Wavelength (cm)	400	90	20	6	3.6	2	1.3	0.7
Primary beam (arcmin)	600	150	30	9	5.4	3	2	1
Highest resolution (arcsec)	24.0	6.0	1.4	0.4	0.24	0.14	0.08	0.05
System Temp	1000-10,000.K	150-180.K	37-75.K	44.K	34.K	110.K	50-190.K	90-140.K

LAT ~ 34° 27 antennas 4 standard configurations 4 hybrid configurations

Arcsec to arcmin resolution => Giant Metrewave Radio Telescope (Pune, India)

http://www.gmrt.ncra.tifr.res.in

30 antennas – one configuration 14 antennas form the inner compact array (1 ×1 km) Frequency: 151, 235, 330, 610, 1420 MHz Full Resolution: 2" (@1420) – 20"(@151) LAS: 7' (@1420) – 68' (@151)

Arcsec to arcmin resolution => Westerbork Synthesis Radio Telescope (Westerbork, NL)

http://www.astron.nl/wsrt/wsrtGuide

Wavelength	Polarization	Freq. Range	Sys. Temperature	rms in 12h ^a	Conf. Limit
(cm)		(MHz)	(K)	(mJy/beam)	(mJy/beam)
LFFE (260-170)	dual, linear	117-175	700-400 ⁹	5-39	5000-10000 ^g
92	dual, linear	310-390	125	0.250 ^{b,c}	300
49	dual, linear	560-610	75	0.150 ^C	50
21/18	dual, linear	1150-1750	27-31	0.012-0.013	5
13	dual, circular	2215-2375	60	0.021	1.3
6	dual, linear	4770-5020	65	0.021	
3.6	dual, linear ^d	8150-8650	110	0.042	
UHF-low	dual, linear	250-460 ^e	120-250 ^f	0.500 ^C	
UHF-high	dual, linear	700-1200	120-180 ^f	0.085	

Wavelength	Aperture	Single antenna FWHM	Synthesized beam
(cm)	Efficiency	field of view (deg)	(arcsec)
LFFE (260-170)	0.30	5-8	160-104
92	0.59	2.6	55
49	0.59	1.4	30
21-18	0.54	0.6-0.5	13-11
13	0.54	0.37	7.8
6	0.48	0.17	3.7
3.6	0.35	0.10	2.2
UHF-low	0.39	2.0-3.1	39-72
UHF-high	0.39	0.83-1.11	15-26

LAT ~ 53° 14 antennas – 10 fixed and 4 movable in 4 different configurations

Arcsec scale resolution needed => Australia Telescope Compact Array (Narrabri, Australia)

http://www.atnf.csiro.au 6 movable antennas 13 configurations

> Bands: 20 cm - 3 mm Full Resolution: 0.5" - 6"

BAND NAME (λ)	20 cm	13 cm	6 cm	3 cm.	1 cm	3mm
Frequency range (GHz)	1.25	2.20	4.40	8.00	16.0	83.5
	-1.78	- 2.50	- 6.70	- 9.20	- 25.0	- 106.0
Fractional frequency range	35%	13%	44%	14%	44%	24%
Number of antennas	6	6	6	6	6	5
Number of baselines	15	15	15	15	15	10
Primary beam "	33'	22'	10'	51	2'	50~
Synthesized beam (arcsec) *	6"	4"	2"	1."	0.6~	25
System temperature (K) °	32	36	33	39	50	300
System sensitivity 5 (Jy) d	350	440	420	390	670	8400
Strongest confusing source (mJy) *	140	24	2.3	0.4	•	-
Flux sensitivity (mJy) ^f	0.19	0.24	0.22	0.21	0.37	5.6
(10 min, 128MHz)						
Brightness sensitivity (K)#	2.1	2.6	2.1	2.0	3.2	0.2
(20 mins, 228MH2, Dec -45°)						
Fux sensitivity (mJy) ¹	0.022	0.029	0.027	0.025	0.043	0.66
(12 hours, 128MHz)						
Brightness sensitivity (K) *	0.26	0.31	0.24	0.23	0.37	0.02
(12 hrs, 128MHz, Dec -45°)						

Arcsec scale resolution needed => Institut de Radioastronomie Millimetrique, IRAM (Grenoble & Granada)

http://www.iram.fr/IRAMFR/index/htm

6 antennas of 15-m diameter & 5 configurations Frequency: 81 – 115 GHz & 205 – 250 GHz Full Resolution: 7" (@100 GHz) – 0.5" (@230 GHz)

Data Archives

Before submitting a proposal consult the radio data archives relative to your project

Each observatory adopts a policy on the data proprietary periods, and observational data become public after some time (usually 1 year). Data archives are easily accessible from the web:

EVN	http://archive.jive.nl/scripts/listarch.php	http://db.ira.inaf.it/evn/
VLBA	http://vlba.nrao.edu/astro/archive	
MERLIN	http://www.merlin.ac.uk/archive	
VLA	http://www.vla.nrao.edu/astro/#D9	
GMRT	http://neptune.gmrt.ncra.tifr.res.in/obsas	tro/
WSRT	http://www.astron.nl/p/WSRT4.htm	
ATCA	http://atoa.atnf.csiro.au/	
IRAM	http://iram.fr/IRAMFR/PDB/arch.html	

II. Proposal Submission

Each array/institution releases a Call for Proposals twice or three times a year, with usually well known deadlines (consult the web pages)

The proposal consists of two parts: <u>Cover Sheet</u> and <u>Scientific Justification</u>

The <u>Cover Sheet</u> contains all the details concerning the observations (frequency, setup, total time) and the target source and calibrators (position, expected flux density at the requested frequency/ies, visibility). The <u>Scientific Justification</u> contains the scientific case

Electronic Submission is now the rule in most cases

Example of electronic submission

Different tools but very similar approach

III. Schedule Preparation

- 1) Visibility of the targets/calibrators
- 2) Duty cycle targets/calibrators
- 3) Setup of the observations

<u>Calibrators</u> fringe finder (for VLBI observations) primary (amplitude calibrator) & secondary (phase calibrator) polarization and/or bandpass if needed

<u>Duty cycle</u> depends on frequency, array ...

- 4) Software to produce the command file necessary to run the telescopes Note that each telescope/array has a different one!
- 5) Command file sent to the telescope operators

SCHED for VLBI Observations

File to be edited named code.key and processed by the program SCHED which produces: codesch.nn, code.sum and code.skd

1 _____ ! _____ correl = JIVE version = 3coravg = 4.0 expt = 'The Compact Structure of Radio-loud BAL Quasars' corchan = 16 expcode = EJ007Acornant = 10 corpol = on piname = 'D.R. Jiang' corwtfn = 'uniform' address1 = 'SHANGHAI ASTRONOMICAL OBSERVATORY' corsrcs = standard address2 = '80 Nadan Road' cortape = DAT address3 = 'Shanghai, 200030' corship1 = 'D.R. Jiang' address4 = 'CHINA' corship2 = '80 Nandan Road' phone = '+86 21 64386191 526' corship3 = 'Shanghai, 200030' obsphone = '+86 21 64386191 526' corship4 = 'CHINA' email = 'djiang@center.shao.ac.cn' cornote1 = ' ' = '+86 21 64384618' fax obsnode = '18cm 256-8-2 ' obstype = VLBI | _____ I mitial Scan Information setinit = EJ007.18CM / !The following defines 256-8-2 = '18cm' band nchan = 8 Block 9 bits = 2 bbfilter = 8.0 pol = dual dur = 00:02:00 gap = 00:00:40 / source = 'J1048+2115' barrel = roll_off group 2 repeat 3 1 source = 'G030329' dur = 00:02:00 / endset / source = 'J1048+2115' dur = 00:01:00 / 1----group 2 repeat 1 source = 'J1051+2119' dur = 00:01:30 / srccat / source = 'J1048+2115' dur = 00:01:00 / equinox= J2000 group 2 repeat 3 Source = J1150+2819 ra=11:50:23.570 dec= 28:19:07.50 / !be checked. source = 'G030329' dur = 00:02:00 / Source = J1413+4212 ra=14:13:34.404 dec= 42:12:01.76 / !be checked. source = 'J1048+2115' dur = 00:01:00 / Source = J1603+3002 ra=16:03:54.162 dec= 30:02:08.88 / !see notes. !becker,2000 article show:54.159,but from NED, we can use 54.162 Source = J1655+3945 ra=16:55:43.235 dec= 39:45:19.94 / !use NED, in becker, 19. 91 exit / endcat /

Position of targets and calibrators in the plane of the sky

Experiment code: BV057

Jobserve for VLA Observations

X Jobserve	e 1.7.0, February 10 2003		
File Options Ed.	it Databases Reports	Schedule	Help
NRAO	Calibrator	Observe	Paste
Defaults	J2000	List	List
1 44 2 PP 3 P1 4 P2 5 LL 6 L1 7 L2 8 L3 User Defaults	1 0001+192 2 0003-174 3 0004+462 4 0004+203 5 0005+544 6 0005+383 7 0006-063 8 0006-000 Source List		
Reset Refresh	Clear New entry	Velete Copy	Lut Paste before

ATCA has a software similar in concept to JObserve

IV. After the observations...

In most cases the observer receives a dat tape/cdrom with the raw data, or a message with instructions for data retrieval. At this point the the data reduction starts...

LINE OF COMMIN

Future proposal deadlines

EVN, e-VLBI, VLBA	, VLA => 3 times/year:
	1 st Feb, 1 st Jun, 1 st Oct
	Next one is on 1 October 2007
GMVA	=> 2 times/yr
	1st Feb, 1st Oct
	Next one is on 1 October 2007
MERLIN	=> every six months
	15 Mar, 15 Sep (usually)
	Next one is on 15 October 2007
WSRT	=> every six months
	15 Mar, 15 Sep
	Next one is on 15 September 2007
ATCA	=> every six months
	15 Jun, 15 Dec
	Next one is on 15 December 2007
GMRT	=> every six months
	Jan, July
	Next one January 2008
IRAM	=> every six months
	Next one is on 13 September 2007