

2nd ERIS, Bonn, September 2007

Max-Planck-Institut für Radioastronomie

The Giant Metrewave Radio Telescope GMRT

Tiziana Venturi INAF, Istituto di Radioastronomia tventuri@ira.inaf.it

GMRT user

Outline

-The instrument - features and scientific goals

- Issues in the observations data reduction

- Practicalities - how to apply for GMRT time, how to prepare an observing schedule

- Some results

GMRT

-Radio interferometer designed to explore the low frequency range of the radio spectrum (now between 150 MHz and 1.4 GHz)

- Project of the Tata Institute of Fundamental Research (TIFR), National Centre for Radio Astrophysics (NCRA)

- Located in Maharastra (India), near Pune

The Array

- Consists of 30 parabolic antennas, with diameter of 45 m

- Covers the range 150 MHz - 1.4 GHz with 5 bands:

150 -156 MHz 232-244 MHz 315-335 MHz 590-630 MHz 1000-1450 MHz

- One single configuration with fixed antennas: a compact array with 14 dishes in a central 1 km² and the remaining antennas in a sort of Y configuration, with longest baseline of the order of 25 km

Specifications

		Table 1: Me	easured Syst	em Paramet	ers of GMR	т	
Parabolic Reflector Diameter	45m				Frequency	(MHz)	
Focal Length	18.54 m	Primary Beam (arc min)	151 186±6	235 114±5	325 81 ± 4	610 43±3	1420 $24 \pm 2 * (1400/f)$
Physical aperture	1590 m ²	Receiver Temperature (IR) Typical T _{sky} (off galactic plane) Tetal System Temperature (K)	308 482	55 99	50 40	10	40 4 75
Sensitivity of single dish	0.3 К / Ју	$(T_R + T_{sky} + T_{ground})$ Antenna Temp (K/Jy/Antenna)	0.33	0.33	0.32	0.32	0.22
Feed Support	Quadrupod	Synthesised Beam (arcsec) Whole Array Central Square	20 420	13	9	5	2
Mounting	Altitude-azimuth	Largest Detectable Source(arcmin)	68	44	32	100	7
Elevation Limits	Software Limit 17 — 90 degrees	Usable Frequency Range (191Hz) Reliable With some Luck	150 - 156 150 to 158	232 to 244 230 to 250	315 to 335 305 to 360	590 to 630 570 to 650	1000 to 1450 950 to 1450
	Hardware Limit 15 — 110 degrees	Fudge Factor(actual to estimated) Short Observations	10	5	2	2	2
Azimuth Limits	Software Limit — 265 to +265 degree	Long Observations* Best rms sensitivies achieved to far as known to us (mJy)	5	2 0.6	2 0.3	0.02	1
	Hardware Limit — 270 to +270 degre	Typical Dynamic Ranges	> 1000	> 1000	>1500	>1500	>2000
Slew rate	Azimuth 30 degree/minute	* For spectral observations fu	idge factor i	s close to 1			
	Elevation 20 degree/minute						
Design wind speeds	Operation upto 40 km/h						

New 40-80 MHz feed developed and tested, soon available for all antennas of the array (5. Amiri)

Low Frequency Feed in boxing ring configuration and co-located with 327 MHz GMRT existing feed with extended reflector. On the ground and attached to the GMRT dish turret.

Scientific goals of GMRT

- Low frequency part of the non thermal radio spectrum
- Sensitive to extended low brightness radio emission
- Large range of angular resolutions within just one observation
- Large field of view

Epoch of galaxy formation (high-z neutral hydrogen)

Pulsars and neutron stars

Stellar objects, Galactic plane (Sun, SNR, transients)

Deep surveys

...

Extended emission (normal galaxies, lobes of radio galaxies, galaxy clusters ...)

Some features of GMRT

2 bands (USB and LSB) recorded at each frequency, with RR and LL recorded in each band – Full Stokes parameters newly available Bandwidth of 16 MHz (each band) down to 325 MHz; 8 MHz below

Ionosphere and RFI become an issue at low frequencies (below 610 MHz)

Spectral line correlation essential at these frequencies both for RFI removal and to reduce bandwidth smearing over the field of view

Bandwidth divided into 128 channels (new feature 256 channels), width from 3 to 125 kHz/ch

Issues in the observations and data reduction

Preparing the observation

Selection of phase calibrator is an issue for vs610 MHz- always check the NVSS and VLSS images

A-priori calibration

Now possible to combine USB and LSB before the data reduction starts RFI removal and bandpass calibration

Self calibration always necessary

Imaging

Dealing with strong sources off the phase centre Large field of view (i.e. ~3° at 327 MHz) requires 3D imaging

Raw data into fits format with gvfits (available only at GMRT) Full data reduction with AIPS

Checks during the observations

Keep an eye on the calibrator

Band at 610 MHz

How to apply for GMRT time

2 deadlines/year, January and July

Email submission (cover+scientific justification)

GMRT Observing Application

CYCLE 11 DEADLINE: Saturday, July 15, 2006 INSTRUCTION: Each numberet item must have an entry or 11/A or 11A SEID TO: GMET Time Allocation Committee, 11CRA-THFR,	Proposal Code:
Post Bag 3, Ganeshkhind, Pune 411 007, INDIA Email: gtac@ncra.tifr.res.in	Received:

(1) Date of preparing this application

(2) Title of Proposal:

(3)	AUTHORS	DISTITUTION	Will come to GMET?	Email (needed for PI & Co-PL)	Nationality *

[†] Please write the PI's name in CAPITAL LETTERS.

* Hationality is required to obtain official clearance, only for non-Indian national: planning to come for observations. (4) Eelatet previous GMRT proposal number(s):

(a) Taines: protoco officir propositi number;
 (5) Contact author Address:

- Telephone:
- Bax:

THERE:

(6) If this proposal is intervied to support a PhD, project, plaze mention the name of the FnD, student, the anticipated year of completion of the FnD, and also include a brief outline of the FnD, project in the Scientific Justification:

(7) Scientific Category:

⊖ astrometry, geodesy & techniques, ⊖ solar, ⊖ propagation, ⊖ planetary, ⊖ stellar, ⊖ puber ⊖ ISI4, ⊖ galactic center, ⊖ galactic structure & dynamics (HI), ⊖ normal galaxies, ⊖ active galaxies, ⊖ cosmology

- (8) Wavebands 21 cm 50 cm 90 cm 128 cm 200 cm dual (50/128) cm Total
- (b)
 (b)
 (c)
 <th(c)</th>
 <th(c)</th>
 <th(c)</th>
- (10) Type of Observation: () imaging, () point source, () continuum, () solar, () spectroscopy, () pulsar, (check all that apply) () phased array, () Other ______

(11) ABSTRACT (Please type within this space only.)

(12) Will PI/ Co-PI be present for observations? () Yes () No Data reduction at? () Home () Other .cocccct.

(13) Help required: O None O Consultation O Friend (extensive help)

(14)	Spectroscopy Only:	line 1	line 2	line 3	line 4
	Transition (HI, OH, etc.)				
	Rest Frequency (MHz)				
	Velocity (km/s)				
	Observing frequency (MHz)				
	Frequency Resolution (kHz/channel)				
	Ems noise (mJy/bm, nat. weight, 1 hr)				
	Ems noise (K, nat. weight., 1 hr)				

(15) Number of sources \underline{xxx} (If more than 10 please attach a list together with LST range(s). If more than 30 sources give only selection criteria and LST range(s).)

(16) Name	Epoch: 1950()	GHEL	Band	Band-	Flux D	density .	Max.	Requ-	Times	LST
	2000 ()	array†	(Acm)	wir.th	line	cont.	Ang.	ired	requ-	range
	F.A Dec		1	(1/IHz)	(mJy [‡])	(mJy)	size	rms	ester!	
	hh mm ± 100.00						0	(mJy/		
								beam)	(hrs)	(hrs)
							<u> </u>			
† Please inti	cate your preferenc	e for the	GMRT.	Аттеу сол	figuration	as per t	he follos	ving poss	ibilities:	
F All ante	ennas available.									
Nex Only in	x antenna: require	d (eg. VI	BI, pub	ar test/ m	onitoring)				
COO Central	l square antennas o	mly			1					
CO1 Central	l Square antennas -	+ 1 st ant	enna in e	ach arm	f Phase	e. Array				
A00 Arm a	itennas only									
A01 Arm ar	stennas only with u	up to 4 an	tennas fr	om the C	entral Squ	are				
‡ Peak flux	density.									
£ including	overheads.									

Notes to the table (if any):

(17) Dates preferably avoided

(18) Special requirements of hardware, software, or operating procedures, etc:

- 1 side band (16 MHz) () or, 2 side bands (32 MHz) ()
- Is integration time less than 3 seconds required for extended periods? ()
- Specify expected disk space requirement for the project (if more than 10 GBytes):
- Non-standard Frequency ()
- Short spacing critical ()
- Correlator Full Polar * 🔿
- Correlator High resolution (256 channels) * ()
- Phaset array requiret O
- If pulsar, specify pulsar backend required:

* on experimental basis

(19) IMPORTANT: If your proposal(s) for GMRT observations have been scheduled in the past,

How to prepare the observing schedule

Calibrators (primary, secondary, bpass) Visibility of target sources Frequency & setup

For GMRT Observations

- Frequency Settings Calculator (TPA values)
- Rise, Transit and Set time of Source(s)
- Command (Observation) File Creator NEW

Released on Experimental Basis.

Dec

Target-Name

3C48

-

1254+116

NGC5435

Epoch

1950.0

2000.0

2000.0.

-

Submit	Defau

FROM THE GMRT WEB SITE

Nova GK Persei

610 MHz radio emission overlaid on the optical emission lines

Discovery of a 60 msec pulsar in the SNR G21.5-0.9

Studies of radio galaxies

(from Giacintucci et al., A&A, in press)

Central radio galaxy in the poor galaxy cluster A2372 $610 \text{ MHz: rms} \sim 40 \mu Jy/b$ $\theta \sim 6''x6''$

Head tail galaxy at the centre of the poor galaxy cluster A1775

Spectral index image 235-610 MHz with 235 MHz overlaid

Diffuse emission from galaxy clusters

327 MHz relic radio emission in the rich merging galaxy cluster A521 $rms \sim 90 \mu Jy/b, \theta \sim 9'' \times 9''$

(Macario, Master Thesis, 2007)

RXCJ2003-2323

610 MHz emission overlaid on Chandra rms ~60 μJy/b, θ ~ 6"x6"

(Venturi et al. 2007)

A781

FROM THE GMRT WEB SITE

Eridanus Group of Galaxies HI emission from more than 60 galaxies; HI deficiency for those galaxies in regions of higher density

610 MHz image of the Spitzer First Look Survey – rms 30 μJy/b,

4 deg²

