Wide-Band Imaging

Multi-Frequency Synthesis.

- 1. Basic Fourier relations (equation-free!!)
- 2. The ideal world vs real life.
- 3. Wide band interferometry:
 - Advantages:
 - greater aperture filling, thus cleaner dirty beam.
 - more data -> better SNR.
 - Disadvantages:
 - breakdown of assumption of monochromaticity
 -> `spectral artifacts'.
 - huge datasets.
 - others...
- 4. Weighting schemes.
- 5. How to clean wide-band data.

View from a (southern hemisphere) quasar...

1. Basic Fourier Relations.

^ŷ The UV plane is the 'Fourier dual' of the real sky.

Features of the FT:

fringes \Leftrightarrow point (delta function).

MANCHESTER 1824

Features of the FT:

higher spatial frequency \Leftrightarrow further from the origin.

Features of the FT:

multiplication \Leftrightarrow convolution.

Features of the FT:

gaussian ⇔ gaussian.

2. The ideal world...

MANCHESTER

The simplest sky object which could be of interest: 2 point sources.

MANCHESTER

...vs real life.

Sparse sampling of the UV plane => 'dirty beam'.

Visibilities as measured by Merlin, δ =+35°, 16 x 1 MHz channels.

Even realer life!

Alas, every measurement includes noise...

SNR of each visibility = 15%.

3. Wide Band Interferometry.

Dodrell Bank Observatory ...could get more baselines if we moved the antennas!

The University of Manchester

...but simpler to change the observing wavelength.

With many wavelengths...

...we have many baselines,

and, effectively,

many antennas

Narrow vs broad-band: UV coverage

16 x 1 MHz

Merlin, δ =+35°

eMerlin, δ =+35°

Narrow vs broad-band - without noise:

16 x 1 MHz

500 x 4 MHz

Narrow vs broad-band - with noise:

16 x 1 MHz

500 x 4 MHz

SNR of each visibility = 15%.

MANCHESTER

4. Weighting Schemes.

Natural vs uniform: weighted visibilities

MANCHESTER

Natural weighting

UV plane

UV plane

Uniform weighting

Natural vs uniform: without measurement noise

Natural weighting

Uniform weighting

Natural vs uniform: now with added noise.

Natural weighting

Uniform weighting

SNR of each visibility = 0.7%.

Let's work in 1 dimension for simplicity. The dirty beam *B* is related to weights W_i as follows:

 $B_k = \sum_{j=0}^{N-1} W_j S_j \exp(2\pi i j k/N).$

The V term is neglected because all visibilities are equal to 1. S here is the 'coverage function' and is either 0 or 1. We have to include it to prevent us from trying to find weights for grid points at which there are no data.

Least squares theory says we should try to minimize a sum of squared residuals, given by:

SSR = $\sum_{k=0}^{N-1} M_k [(B_k - B_k^{\text{ideal}})^2 + \sigma_k^2].$

We probably want to choose a gaussian for B_k^{ideal} . But what is M_k ?

 M_k is a masking function which allows us to ignore part of the beam and fit to the rest if we wish.

Setting all ∂ SSR/ ∂W_j to zero (and making use of the fact that W must be Hermitian) gives the `normal' equations:

Aw = B

where

 $A_{jl} = \sum_{k=0}^{N-1} M_k \exp(2\pi i k [j-l]/N), w_l \text{ actually} = W_l S_{ll}$

and

 $\beta_j = \sum_{k=0}^{N-1} M_k B_k \exp(2\pi i j k/N),$

<u>provided</u> $\sigma_k = 0 \forall k$ (otherwise equations nonlinear).

- If $M_k=1$ for all k, the solution is trivial: **A** turns into the identity matrix, so the optimum W is just the Fourier inversion of the ideal beam. If this is gaussian, so will W be. This then is just the standard tapering function.
- Matters become more interesting if we set M_k to 0 for some k, eg within some radius of the phase centre.
- So linear equations in *W*? Let's solve them...

...but 8000 time samples x 15 baselines x 2000 frequency channels, gives 2.4e8 unknowns. Ulp.

But:

- As the cognoscenti know, normal equations are often illconditioned. So we didn't really want to solve them directly anyway.
- We can't include noise and keep linear NE.
- The way around this computing impasse is to make use of the power of the FFT in an iterative solution. A single pass of the iteration does as follows:
 - 1. FFT⁻¹($W \times S$) -> B
 - 2. $B_{\text{resid}} = (B B_{\text{ideal}}) \times M$
 - 3. FFT(B_{resid}) -> W_{resid}
 - 4. $W = W \lambda W_{resid}$

 $\boldsymbol{\lambda}$ here is the loop gain.

Simulated e-Merlin data. 401 x 5 MHz channels; $v_{av} = 6$ GHz; $t_{int} = 10$ s; $\delta = +30^{\circ}$

Weighting schemes:

I Stewart – Bonn ERIS, Sep 2007

Best fit outside 20-pixel radius

'Dirty beam' images (absolute values).

I Stewart – Bonn ERIS, Sep 2007

Best fit outside 20-pixel radius

Comparison of different weighting schemes:

The University of Manchester

Jodrell Bank Observatory

weights optimized to remove far-field beam ripples:

But real data is noisy...

SNR of each visibility = 5.

Other ways to achieve super-uniform weighting:

1. Multiply visibilities with a vignetting function of time and frequency, eg

2. Aips task IMAGR parameter UVBOX: effectively smooths the weight function.

5. How to Clean Wide-Band Data.

MANCH

^{nk} Drawbacks of wide-band: real objects often have non-flat spectra.

Where both point sources have identical spectra:

Spectral indices both +10.0 (!!!)

^{Inv} Drawbacks of wide-band: real objects often have non-flat spectra.

More realistic: different spectra:

This will not clean away.

MANCHESTER

^{by} Sault-Wieringa algorithm: a generalized CLEAN.

Taylor-term beams

The University of Manchester

Jodrell Bank Observatory Testing the S-W algorithm: the input simulation

Alternate cleaning:(i) 1000 Clark clean cycles (IMAGR)

...not good.

^{ry} Alternate cleaning: (ii) each chan cleaned, then co-added.

...pretty good, but do we lose faint sources?

S-W clean to various orders (All 1000 cycles with gain = 0.1)

0th order (equivalent to Hoegbom clean)

S-W clean to various orders

1st order

MANCHESTER

S-W clean to various orders

2nd order

S-W clean to various orders

3rd order

Not much left but numerical noise.

S-W Implementation in Parseltongue

Wide-Band Conclusions:

- Greater sensitivity.
- Better coverage -> cleaner beam. This reduces the need for cleaning;
- but cleaning is more elaborate process.
- Weighting schemes are important.
- Large data sets -> parallel processing needed.
- Primary beam size varies across band.
- Ionospheric Faraday rotation varies across band(?)
- Calibration easier or harder? Certainly more interesting...!