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NS Noise and measurement

1 Assessing image quality

1 Noise In interferometry
-- “irreducible” factors
-- “controllable” factors

 Practical estimates of the expected noise in an image

d Quantifying the brightness distribution in an image
-- Information and its limits in interferometric images
-- representing the observed structure; model fit
-- error estimates for model fits
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NS Assessing image quality

d Fit to baseline visibilities:
-- should represent adequately amplitudes, phases, and
phase closures.

O Residual flux:
-- should be distributed smoothly, with a nearly zero
mean and comparable positive and negative amplitudes.

 Noise in the final image:
-- should have a Gaussian distribution;
-- should be approaching the thermal noise level,
corrected for the bandwidth and time-average smearing
and modified by self-calibration.
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L Noise in interferometric images

Vi(u, v) — visibility data; e(u, v) — associated errors

[(l,m) — image brightness distribution; F — Fourier transform operator.

Q Additive errors, V4+e=T+Fe¢
-- system noise, interference, cross-talk, baseline-dependent
errors

L Ve=1xFe
O Multiplicative errors,
-- Uv-coverage, gain calibration errors, atmospheric and
lonospheric errors

 Convolution errors, Vsxe=[Fe

 Position dependent errors
-- pointing errors, bandwidth and time-averaging smearing



Noise In interferometric images

During data processing, the noise is modified by

Gridding and convolution
Averaging in frequency and time
Editing

Tapering and weighting
Deconvolution (CLEAN-Ing)

U O 0 0 0O O

Self-calibration
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NS Thermal noise e

S — source: total flux density

A, Tsys, Ma, € — antenna: Area, System temperature, Efficiency, and Errors
(phase [radians|, amplitude [fractional])

N, n. — array: Number of antennas, Correlator efficiency

tint, Tohs. A — observation: Integration time, Observing time, Observing band-
width

_ . . 1 | NN -1
1. Dynamic range of the observation: D~ — ( > )
(__
. ‘ V2kpTyy,
2. Thermal errors in the antenna phase and amplitude €th = — ~, L
AnaSVEtons AV
\ : : [ €th
3. Thermal noise on a baseline ASy = ? S
C
1 2 ‘Jr-in’r
4. Thermal noise in the image Aly = ASy
ﬂ‘\ n}‘».*\ (4\ _ J—)
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% Bandwidth smearing

Vo, Av — observing frequency and bandwidth; finite Av /vp; averaging across
Av: ug = u, (1 /v), vg = v,(1 /) — chromatic aberration.

Effects:

Consider Gaussian bandpass and circular Gaussian tapering.

1. Beam degradation across the image:

1 7
Bp (A0, 6y) = exp (— “9] |

VB; .ﬁ;rfﬁ'
with
A8 __ L (Ar 6 .
ag=2In2——, B=1+
HPBW \ vo Bupew
2. Reduction in the peak response: R, — 1 — l
I vﬂ
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NS Bandwidth smearing

3. Average contribution to image noise in an image of size {)r:
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N Time average smearing e
T, — averaging time: (u, -s*:}\ig_g}.a_ra = (u, v)|¢

Effects:

1. Largest detectable structure on a baseline Br Ornax —
VobhsWeT aBL
we = 7.25 x 107° rad/sec

2. Average baseline amplitude reduction over a 12-hour period, for a sky location

(I, m)
FT_'}
12672

max

if?fg} = (I/Iy) ~ 1 — ———(I> + m®sin®§)

3. Average amplitude reduction in an image location offset by 8 from the phase—

n'”rg 5.
D : Y= 9 9
Rp)=1-—wm, (—)

12 Ouppw

. _ . 9 p . . ' .
with a = 4(In2) /7=, for a circular uv—coverage with Gaussian taper.

tracking center
2
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NS Time average smearing

4. Average contribution to image noise, for an image of size )

Al o In2 .

E—_}m /;r“[ Rra _}dﬁ = Aly (l — T‘?UE*(T‘--&E EEJE) 3
] E
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where Q = Q1/0uppw
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X Self-calibration

1. Antenna phase and amplitude errors due to selt-calibration on a timescale 7.

ASh(Teor) B Al | tobs

€e(Teor) = s m——~= —.|;
i 15 1|i|-'I .L\ ( ..7\ — :I 15 2 T{_‘-{_‘,]‘
- : o : Lobs
2. Combined antenna errors € = € |1+

TeorlV (N — 1)

3. Expected contribution by self-calibration to the noise level in the image

f‘trha
o, = Al —_—
; " ﬂ:mri\" (:\ — l)

% 4

4. Expected dynamic range in the self-calibrated image
S

= — - [
A _ir]-_n 1l.|,'| J_ + . ‘\'Pl:]iﬁ" . 1 ,l

Foord

Example: An observation lasting for t,,s = 12 hours, with a homogeneous array
of 10 telescopes; self-calibration on a timescale of 7., = 1 minute. The resulting
expected noise level is [, =~ 31 ,.

o
o
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\ Gridding and convolution

O uv-coverage is incomplete and irregular: needs to be
projected onto a reqgular (rectangular) grid

 convolution: Is used for interpolating between the observed
distribution (uo, vo) and gridded distribution (uk, vk).

 convolution function is chosen so that it suppresses the
responses to sources outside the image (a suppression
factor of ~100 is typically reached).

d Simple recipe: avoid undersampling and bright sources near
the edges of the image
-- then most of the noise due to convolution can be
removed during deconvolution, and remaining
(irreducible) addition to the image noise should be within
~0.01Alm

12



Effect of uv-sampling

8600-kir: bascline

Sampling factor

0.0 0.1 0.2 0.3 0.4 05 086 0.7 0.8 0.9 1.0

% atructurc sizc {meas) sam pling Interval {min.}
Gl | 1 3 a 10 ¥ dn Al 180 AL S N1 S R . | all
S LTI I 7 T O 1 A 0 1 T S N N N I N O 1 ¥ T 1 A ¢ V5 04
LI T N | NG 1T I N TR | I 5 R N O U S R A O (.7
131 [ a8 18 11 453 2% L8 1.1 1A G MR LY w2 18 1A L4 11
oI S N U O I A v B 0 - B W 11 7. 55 44 38 32 27 22
20 | 4ok ha 3216 B 25 A0 13 17 11 80 64 22 46 40 A
SN e fEGOTODO%3 0 18 12 T 4 35 024 1k 14 1IZ 10 A4l T
1.6 BT AR E R - B T I R G I | AN I E 11
(.6 SR 400 70 46 vR 4 40 93 Yooaix 47 4 M4 V8
(.3 A400 L8080 a0 a0 3240 16t 1200 LE #1 T all
maximum sampling interval {min.) { largest detoetable structure {meas)
o T ESO g T T
i : il ey R 2 .

90 | 5 Z N Sampling factor:
=gy b o =40 oF ° 1/2 -
E "0 ‘\',\« : ioggig% .......... /3
260 S 230 B¢E e T /s
© - .\o\'\ - of o2
@ 50 - o*'\’ ; ]
2 40 ,\\'\ b -
—-— - \Q\ a—
< 30| o - 1
R £ .

10 - 1

10

100
Pixel SNR

1000

A. Lobanov

T T T
40 b
¥
g 35
2
E
T
a
=}
w
2
5
2
= 30
25
1 1 1
20 15 o
Relative RA. {millioreses)
7 LS L A L B
£ P
¢, e EEE
@ . “ )
2 L e . : =
=2
¢ 7
¢ ¢
2 oo
2
& -
.
s
I
s
P
/ o« J
;-
)
ot Y .
@ e
&
2 -
L . i
& . t -
r .
A I 1 . v




NS Image dimensions

A. Lobanov

Image dimensions are set by the requirements for a successful gridding and by:

1. the observed emission distribution

2. the ranges of observing uv—coverage: tUmin < % < Umpax, Umin < U < Umax.

Effects:

Image dimensions must satisfy the following conditions:

pixel size: _
Al < .

Am <

2Umax <Umax

number of pixels along each axis:

1 1
N, >

Ny > — Vm = — _
ﬂﬂ'”-miu Ama min

Relation between the pixel size, 0, and the size of the syntesized beam, fyppw:

Opix ~ (1/3)0uppw limits the dynamic range to D < 10

Opix < (1/6)0gppw is sufficient for any D < S/(AL,)

14
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INS Weighting and tapering

V{ug, vi), k=1, M — measured visibility distribution
[t needs to be sampled, weighted, and (normally) evaluated on an N x N grid.
The resulting distribution
"W o ~
V™M u,v) = &El Ry Ty, Dy 0(u — up, v — o)V (ug, vg)
Ry — visibility weights

T}, — tapering weight (tapering tunction); typically, a Gaussian defined in terms of
the uv-distance g = v u? + v?
2 fi 2
Trlq) = exp(—q~/20,,)
76.3

This results in the synthesised beam of HHPBR-V[HL%] -
uv[MA]

D — density weighting function.
D). = 1 — natural weighting: minimizes the noise level in the image
D;. = 1/N}, — uniform weighting; minimizes rms of the sidelobes of the synthesised

beam

15
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NS Deconvolution

1 has to be used because the visibility data are incomplete...
which leads to diffraction patterns in the image plane
that cannot be removed either by direct Fourier inversion,
or by linear methods

d non-linear deconvolution has to be applied to correct for
the diffraction patterns.

d a number of complementary deconvolution algorithms exist
(CLEAN, MEM, etc.) that can be applied to specific obser-
vational setups and particular brightness distributions.

1 a successful deconvolution does not make a significant
contribution to the noise level

O problems may arise with the distribution of noise.

16
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Excessive use of CLEAN
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% Gaussian noise

Suppose that a residual image (noise image) has an rms o, and the maximum
absolute flux density |s;|. For Gaussian noise with a zero mean, the expectation

1/2

— N v
| B - ¥ pix
""’I‘.f!)i]’)‘ =0y |V2In | ———

\V 20y

where [V,,ix is the total number of pixels in the image.

Quality of the residual noise is given by ¢, = s/ 5y exp -

(; — 1 for the residual noise approaching Gaussian noise.

(; > 1 indicates that not all the structure has been adequately recovered.

(; < 1 implies that the image model has an excessively large number of degrees
of freedom.

ke = exp(|In (;|) — 1 gives the relative deviation (in units of the Gaussian stan-
dard deviation, o) of the measured noise distribution from the ideal Gaussian
noise.
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NS Expected noise Iin image

O Suppose that
-- data are properly sampled and image dimensions are
properly set
-- natural weighting is chosen
-- NO strong uv-tapering is applied
-- no significant errors are introduced during self-
calibration and deconvolution

 The resulting noise in the image should approach

/2

. A T2 2 V2 2115
TRNIEI= [—\Ur + 0 e T+ \Taveg)” T (TAy) ]

m

If the measured noise Al eqs In the image:
Al eas = Aleq — there are still perhaps some strides to be made
AL, < AlLeas < Al — should be good enough to call it a day
AT peas < Al — hope that not too many things have gone out of hands

20
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Practical suggestions

Imaging doctrine in thirteen (sixteen) words:

The less you have to do to your data,
the better you (and the datal) are.

In other words, one should try to minimize the number of
operations required to achieve the expected noise level in an
Image.

The shortest path is usually the right one.

If the reduction process does not converge, some problem has
most likely occurred early on.

21
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NS Information in images

5

10

d Ideally, information can be
extracted from each pixel... but:
-- pixel fidelity?
-- physical significance?

. Log(SNR)
= =

18
-
S

10

O Fitting by a set of a priori defined 10

shapes (gaussians, discs, etc.) is _ FowerDoman e

a common remedy: o CORNEROOBRR 30305 |,

-- It provides a viable description 72
E

of the structure observed P

-- but reduces the number of o

degrees of freedom of the °| i) I b

description | 7Gaussians, 90DF |

Relative R.A. [mas=]
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Information In Iimages

1 Examples of pixel-based extraction of information:
-- spectral index imaging

-- turnover frequency imaging

-- 2D correlations between pixels in different images

70
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Fitting a priori defined patterns

Fitting measurements with a priori defined patterns is a

general approach to inverse problems:

-- design a model with a number of adjustable parameters

-- use the model to predict measurements

-- choose a figure-of-merit function to quantify deviation
between model predictions and measurements

-- adjust the parameters to minimize the merit function

Goals:
-- best-fit values for the parameters and their uncertainties

-- a measure of the goodness-of-fit of the optimized model

Types of fitting:

-- fitting in the image plane (IMFIT)

-- fitting in the Fourier domain — model fitting
(UVFIT, MODELFIT, DIFMAP)

24
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Model fitting

Optimization of the fit is achieved by maximizing the likelihood of the model.
The model:

V(u, v) = F(u,v;aq,..., @) ) + noise

The likelihood of the model (assuming that the noise is gaussian):

I~ ﬁ [{?}{p _% (1; — F(ui, vg; a1, ..., rr._,uj)g }

i=1 2 or
Maximizing the likelihood is equivalent to minimizing y>:
{:’}

, N (I; — F(uj, v ay, ..., f'f-ﬂf))”

X" =X

=1 oF

Least-squares algorithms are applied for the minimization.

25
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NS Problems with least squares

O Chance of finding a local minimum instead of the global one

1 Slow convergence along the axes representing poorly-
constrained parameters

d Choosing the right number of parameters

2.5 |

-- a tedious task; requires % —

V- ' closure phase |

proper statistical modelling 8
-- F-test can be used, but
this depends on estimating
accurately the DOF number
of the dataset (number of
iIndependent samples)

r\x |

1.5
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\ Error estimation

d Errors are determined by a
boundary of constant y? (taken at a
desired confidence level) in the
multidimensional space of all
parameters fit

-- approximate method: Fisher
matrix

1 0?In L

L]

- . : 2 \ r—
Vi; = cov]a;, a;j|; ! which gives o (a;) = Vi

Oa; Da;

-- Fisher matrix often becomes degenerate

-- Monte Carlo methods can be used generallly

-- correlation between model fit parameters (e.g. flux density
and size) may cause problems

27
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@\ Error estimates

O An analytical (first order) approximation can be given to
relate uncertainties of the fit parameters to SNR of detection of

a given model fit component

Component: Si, — total ux density; Speax — peak flux density; o, — post-fit
rms; d — size; r - radial distance; # — position angle. Uncertainties:

T peak
c L 1/2 Od = d 1
_ O ' b]}i_'ﬂlx
Opeak = Trms 1+
Orms 1
g2 \1/2 or =57
- ot
Ttot = J]_H"&ll{ 1 + ) ]
Ppeak Oy
: oy = atan (—)
r

For large r, bandwidth smearing should be taken into account: o are opeax are
multiplied by 1/Ra,; 04 and o, are multiplied by Bp/HPBW.

28



NS Noise and resolution
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1 Noise and SNR play a fundamental role.

Minimum resolvable size dmin

Maximum detectable size Aypax =

ol+8/2 |

i

i

7mabln2 In (

SNR )] 1/2
SNR—1

rabln2 SNRYIHA) h S \P]

a, b — axes of resolving beam, (7 — weighting function (7 = 0 — natural weighting;

3 = 2 — uniform weighting)

These limits approach the fundamental

quantum resolution limit.

The quantity 1/d i, evaluated over all
pixels gives an equivalent of the total infor-

mation content in an image.

Angular size [HPBW]

(=]
—

10

[a—y

IIIIIIII_L

v

Iy

— resolution limit
---- quantum limit

.--.— superresolution

,r-.-"
i

..
-

[a—

10 100 1000
SNR
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Summary

d Noise and information in interferometric images are

affected by a number of ,irreducible* and ,controllable®
factors (bandwidth and time-average smearing, gridding,
convolution, tapering and weghting, deconvolution and
self-calibration).

The net effect of these factors must be evaluated and
understood, in order to be able to produce and analyze
high-quality images.

Information can be extracted from every pixel of an image,
but this sets extremely high requirements on image fidelity.

Analytical and numerical methods are available to quantify
the information in images by fitting a priori defined patterns
of brightness distribution.
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NS Further reading

d Most of the material covered in this lecture can be found In
the latest version of the ,NRAO Summerschool Book":

1. Taylor, G. B., Carilli, C. L., Perley, R. A. (eds.), Synthesis imaging in radio
astronomy II, ASP Conf. Ser., v. 180 (ASP: San Francisco) (1999)

2. ibid., Chapter 13: “High dynamic range imaging” (R.A. Perley)
3. ibid., Chapter 14: “Image analysis” (E.B. Fomalont)

4. 1bid., Chapter 15: “Error recognition” (R.D. Ekers)

5. ibid., Chapter 16: “Non-imaging data analysis” (1..J. Pearson)

6. ibid., Chapter 18: “Bandwidth and time-average smearing” (A.H. Bridle

F.R. Schwab)

(. ibid., Chapter 33: “Noise and interferometry” (V. Radhakrishnan)

Check individual chapters for further references
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