

1

High-Frequency Radio-Interferometry

Frédéric Gueth IRAM Grenoble

Mm/submm bands

Science drivers

- The cold universe
 - Galaxy formation
 - Star formation
- Continuum → thermal dust emission
- Lines -> molecular rotational transitions
- H2 has no rotational transitions, but CO does (abundance = 10⁻⁴ in ISM)

CO detection toward the multiply-imaged z=2.5 galaxy SMM J16359+6612

Kneib et al. 2005

The rotating circumstellar disk of the YSO AB Aurigae (1.3 mm + 13CO(2—1)

Piétu et al 2005

EU mm arrays

- IRAM Plateau de Bure Interferometer (PdBI)
 - Funded by France, Germany, Spain
 - Open to all EU countries via RadioNet TNA
 - 6 15 m antennas, baselines up to ~800 m, dual polarization receivers (3 mm, 1.3 mm)
 - New Generation Receivers: four bands (3 mm, 2 mm, 1.3 mm, 0.8 mm), two polarizations, 4 GHz bandwidth

IRAM PdBI

IRAM PdBI

Major PdBI upgrade in 2006-09

• Extended baselines

W27

N46

• New generation receivers

768 m → 0.3" @ 230 GHz

E68

EU mm arrays

- ALMA (Atacama Large Millimeter Array)
 - NA (US/NRAO+Canada) + EU (ESO) + Japan
 - Goal: 64 12 m antennas, 10 frequency bands, baselines up to 12 km
 - Funded: 50 12 m antennas, 6 bands
 - ALMA Compact Array (ACA): 12 7-m antennas
 - First science 2010, full operations 2012

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

ALMA

Hardware developments more challenging

- Antennas (surface accuracy $<<\lambda$)
- Receivers (SIS junctions cooled at 4 K)
- Correlator (spectral line observations is standard \rightarrow need thousands of spectral channels)
- New problems for the astronomer
 - **SNR much worst** (more noise, sources weaker)
 - The atmosphere !

The atmosphere

- Thermal emission → noise
- Absorption of incoming signal → attenuation
- Time- & position- dependent phase error
 - \rightarrow Amplitude decorrelation
 - → Radio "seeing"
- Amount of water vapor is highly variable in time
 - Need real-time calibration of signal attenuation
 - Need real-time calibration of phase fluctuations

Atm. absorption

Atm. absorption calibration

- Goals
 - 1. Backend counts → Temperature (Kelvin)
 - 2. Correct for atmospheric absorption
- At mm wavelengths, this must be done very often (20 min) because
 - Receiver gain drift
 - Atmosphere fluctuations

Atm. absorption calibration

Assume linear answer of receiving system

$$C = \alpha (Te^{-\tau} + Tsys)$$

- Observe sky, cold (4K), and warm (273 K) loads
- Compute:
 - System temperature Tsys
 - Receiver gain α
 - Atmosphere opacity τ (using atm. model)

- Timescale of phase fluctuations: seconds to hours
- Need real-time correction of fluctuations during basic integration time (< 1 min), to avoid
 - loss of amplitude (decorrelation)
 - "seeing" (phase \leftrightarrow position)
- This is conceptually similar to adaptative optics in optical/IR domain

- Predict amount of water from water line at 22 GHz (PdBI) or 183 GHz (ALMA) using dedicated receivers (WVR)
- Measurement → Atmospheric model → Water vapor content → Path delay → Atmospheric phase → Realtime correction
- Done every second at IRAM PdBI

WVR at 22 GHz

312 - 400 m 214 - 293 m 32 - 186 m

- Turbulent conditions, 4.4 mm pwv, A configuration
- NRAO150 (point source) → gain of 2.5 in SNR

Off-line calibration 1. Bandpass

- Assumption: frequency- and time- variations are independent
- Calibration
 - A strong quasar is observed at the beginning of each project
 - Its phase must be zero, its amplitude must
 be constant → fit a gain vs. frequency curve
 - Correct all subsequent data for this bandpass

Amplitude vs Frequency for each baseline

Phase vs Frequency for each baseline

 RF:
 Uncal.
 CLIC - 22-NOV-2004 11:19:21 - visitor
 WOON09W05E03
 Scan Avg.

 Am:
 Abs.
 26 1361 KG5A 3C345 P FLUX 12C0(4-3 5D-N05 01-JUN-2001 23:14 -0.4
 Vect.Avg.

 Ph:
 Rel.(A) Atm.
 36 1371 KG5A 3C345 P CORR 12C0(4-3 5D-N05 01-JUN-2001 23:24 -0.2
 Vect.Avg.

Off-line calibration 2. Phase

- Long-term time dependence of the phase is caused by the atmosphere and the instrumental drifts
- Calibration
 - A point source (quasar) is observed every ~20min
 - Its phase must be zero → fit a gain vs. time curve to estimate the phase variations
 - Better: use two calibrators

Phase vs. time for each baseline

Phase vs. time for each baseline

RF: Fr.(A) CLIC - 22-NOV-2004 11:24:13 - visitor WOON09W05E03 Am: Abs. 697 5856 L--1 3C454.3 P FLUX 12CO(109 5D-N05 19-JUN-2001 03:17 -1.4 Ph: Abs. Atm. Ext.1265 6304 L--1 3C454.3 P CORR 12CO(109 5D-N05 19-JUN-2001 10:06 5.4

Scan Avg. Vect.Avg.

Phase vs. time for each baseline

 RF:
 Fr.(A)
 CLIC - 22-NOV-2004 11:24:32 - visitor
 WOON09W05E03

 Am:
 Abs.
 697 5856 L--1 3C454.3 P FLUX 12CO(109 5D-N05 19-JUN-2001 03:17 -1.4

 Ph:
 Abs. Atm. Ext.1265 6304 L--1 3C454.3 P CORR 12CO(109 5D-N05 19-JUN-2001 10:06 5.4

Scan Avg. Vect.Avg.

Off-line calibration 2. Phase

- Phase transfer
 - Atmospheric and most of the instrumental fluctuations should scale with frequency
 - Use 3mm curve (highest SNR) to correct the 1mm data
 - The residual fluctuations at 1mm must still be calibrated

230 GHz data, no phase transfer

 RF:
 Fr.(A)
 CLIC - 26-AUG-2005 08:39:55 - gueth
 WOON09W05E03

 Am:
 Abs.
 956 1361 KG5A 3C345 P FLUX CONTINUU 5D-N05 01-JUN-2001 23:14 -0.4

 Ph:
 Abs. Atm.
 1853 2098 KG5A 3C454.3 P CORR CONTINUU 5D-N05 02-JUN-2001 10:45 5.0

Scan Avg. Vect.Avg.

230 GHz, with phase transfer

Scan Avg.

Vect.Avg.

 RF:
 Fr.(A)
 CLIC - 26-AUG-2005 08:40:10 - gueth
 WOON09W05E03

 Am:
 Abs.
 956 1361 KG5A 3C345 P FLUX CONTINUU 5D-N05 01-JUN-2001 23:14 -0.4

 Ph:
 Abs. Atm. Ext.1853 2098 KG5A 3C454.3 P CORR CONTINUU 5D-N05 02-JUN-2001 10:45 5.0

Off-line calibration 3. Amplitude

- Temperature (K) \rightarrow Flux (Jansky)
 - Scaling by antenna efficiency (Jy/K)
 - Not enough for mm-interferometers because
 - Amplitude loss due to decorrelation
 - Variation of the antenna gain (pointing, focus)
- Need amplitude referencing to a point source (quasar) to calibrate out the temporal variation of the antenna efficiency – just like phase calibration

Scan Avg. Vect.Avg.

- Problem: all quasars have varying fluxes (several 10% in a few months) and spectral indexes
- Cannot rely on a priori antenna efficiency to measure their fluxes (decorrelation...)
- Need to measure the quasar fluxes against
 - Planets
 - Strong quasars (RF)
 - MWC349, CRL618, ...
- Can be **difficult** if a good accuracy is required

PdBI off-line data reduction

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 AMPL.	PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet definedį	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Dices
Array configuration ?	*.	□ J

Input parameters to reduce an observation Standard calibration package ABORT GO HELP AUTOFLAG SELECT PHCOR RF PHASE FLUX R1 FLUX R2 AMPL. PRINT Use previous settings F Yes Use phase correction ? 🗏 Yes Receiver numbers 1 2 File File name not yet defined First and last scan 0 10000 AVERAGE Min. Data quality ? Choices Array configuration ? 🏾 🔻

All calibrations in a row (pipeline)

D	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 At	1PL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet definedį́	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*.	

One button per calibration step The user can check/modify the results

	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 At	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 Ž	
File name	not yet defined	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

Imaging

<u>mm vs. cm domain</u>	<u>Science</u>	Imaging
- Resolution ($\sim\lambda/B$)	$\overline{\mathbf{\dot{c}}}$	\odot
- FOV ($\sim \lambda/D$) smaller	$\overline{\mathbf{i}}$	
- Much less pixels in image	$\overline{\mathbf{i}}$	
- Much more spectral channels	\bigcirc	$\overline{\mathbf{i}}$
- SNR much worst	$\overline{\mathbf{S}}$	$\overline{\mathbf{i}}$

Visualization

- Large data cubes → visualization can be an issue
 - Plot all channel maps, movies
 - Position-velocity plots
 - Extract spectra at selected positions
 - Integrated spectra over map areas
 - Emission moments
 - ...
- Extracting the information from large data cubes is not trivial

Channel maps (GO BIT)

Spectra (GO SPECTRUM)

Spectra at selected positions/integrated (GO VIEW)

Velocity (km/s)

Dec. Offset (")

Advanced techniques

Polarization

- Not yet standard
- Will be available soon (PdBI+NGRx, CARMA)

Snapshot observations

- Not possible because of poor SNR and uv coverage
- Track-sharing between ~5 sources possible

Advanced techniques

- Self-calibration
 - Possible only on strong sources
 - In practice: absorption lines in front of quasars
- Mosaicing •
 - Standard observing mode at PdBI (up to 50 fields)
- Inclusion of short-Spacings
 - (Almost) standard with IRAM PdBI + 30-m

Short-spacings

Belloche et al. (2004)

ERIS 2007

More on mminterferometry?

- IRAM: www.iram.fr
- ALMA@ESO: www.eso.org/projects/alma
- IRAM mm-interferometry school series
 - Proceedings available on-line and in printed form (to be updated this autumn)
 - School #5 in October 2006
 - School #6 in 2008 co funded by RadioNet