

NWO

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Introduction to Radio Interferometers

Mike Garrett (ASTRON/Swinburne)

ERIS School - Bonn - Sep 11, 2007.

Overview of Lecture

Early radio astronomy
 – what makes radio astronomy "special"!

Radio Interferometry
 – early days and motivation

Interferometer arrays

metre, cm, mm and sub-mm wavelengths

Types of object we can study - science

The Future is VERY, VERY, VERY bright!

Early days of radio astronomy

1932 Discovery of cosmic radio waves (Karl Jansky)

Galactic centre

EUROPEAN

The first radio astronomer (Grote Reber)

Built the first radio telescope
"Good" angular resolution
Good visibility of the sky
Detected Milky Way, Sun, Cas-A, Cyg-A, Cyg-X @ 160 & 480 MHz (ca. 1939–1947).

Published his results in ApJ
 Multi-frequency observations

The first radio astronomer (Grote Reber)

Built the first radio telescope
"Good" angular resolution
Good visibility of the sky
Detected Milky Way, Sun, Cas-A, Cyg-A, Cyg-X @ 160 & 480 MHz (ca. 1939–1947).

Published his results in ApJ

Multi-frequency observations

The things that make radio astronomy "special"
 Reber's multi-frequency observations revealed the non-thermal nature of radio emission (UNEXPECTED!)

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

The things that make radio astronomy "SPECIAL" Rebers multi-frequency observations revealed the non-thermal nature of radio emission (UNEXPECTED!)

A new transparent window on the Universe Radio window covers 5 decades of freq/wavelength:

SPECIAL: Radio waves largely unaffected by dust...
 Can observe Day and Night!
 Studies of the Early Universe possible.

Radio Spectral-lines

1944: van der Hulst predicts discrete 1420 MHz (21 cm) emission from neutral Hydrogen (HI).

1951

Wurzburg "Riese" Radar Antenna, 7.5 m diameter

Detected by Ewen & Purcell (1951):

SPECIAL - HI - most abundant element in the Universe!

Gas DYNAMICS:

Scale/Structure of the Milky Way

Tracing Dark Matter in other galaxies

-The Dark Ages...

1950-60's: Construction of Large Telescopes

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

The need for better ANGULAR RESOLUTION

Ang. resolution:

$$\theta = \frac{1.22\lambda}{D}$$

$$\theta = \frac{2.1 \times 10^5 \lambda}{D}$$

arcseconds

Human eye: 17 arcsecsEffelsberg 100-m @ 21cm:

440 arcsecs (8 arcmins)

The answer RADIO INTERFEROMETRY

Ang. resolution:
$$\beta = \frac{1.22\lambda}{B}$$
 $B = Baseline i.e. telescope separation$

For 2 telescopes separated by 30 km ==> Ang. resolution: ~ 1 arcsecond – MUCH BETTER!

Wave-fronts from distant source perfectly in phase

RADIO INTERFEROMETRY & Correlation

time

RADIO INTERFEROMETRY & Correlation

Interferometry tries to sythesise a GIANT telescope from lots of small ones:

Earth rotation helps too (Ryle):

Earth rotation helps too (Ryle):

for source

Earth rotation helps too (Ryle):

The first radio interferometers

Searly interferometer arrays pioneered by UK and Australian astronomers:

1-mile telescope (1963)

MILLS CROSS (CSIRO)

Motivation was to identify radio sources with plausible optical counterparts...

3c273 – first AGN (Hazard, Schmidt et al) 1963

2000 Å

3000 Å

4000 4

5000 Å

SPECTRUM AS RECEIVED

> Stellar objects ????

- > Redshifted lines z=0.2 => cosmological distance objects
- > 1000 x more luminous that Milky-Way

RadioNet

EUROPEAN

3C273 MERLIN 408MHz

1970 - Westerbork Synthesis Radio Telescope 14 x 25 metre telescopes, 91 baselines, 3km baseline.

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

The SPECIAL nature of the radio sky

Nearly all the bright radio sources are extra-galactic and EXOTIC – AGN (Quasars, radio galaxies etc.)

Nearly all are located at cosmological distances (z ~ 1)
 - c.f. optical sky (z=0 for naked-eye objects!)

Huge excess of faint sources: ==> first evidence of rapid cosmic evolution...!

Non-thermal emission – synchrotron mechanism ==> violent Universe powered by gravitation rather than fusion.

Radio sources also discovered to be highly variable on time scales of hours or less:

> ==> very compact objects – scales ~ solar system.

> At z=1, 1 arcsecond corresponds to ~ 10 kpc (30,000 lt years).

> Need for much HIGHER RESOLUTION (baselines ~ Earth diameter, 12000 km)

Pioneering long-baseline interferometry show many
 Radio sources unresolved on sub-arcsecond scales

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)

1967: Very Long Baseline Interferometry

Quasar

Noise

Noise

1000x better resolution than Optical telescopes - its so easy!

Radio Telescope

Mark III

40 Years of Very Long Baseline Interferometry (VLBI)

Superluminal motion discovered – Whitney et al. 1973.

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Weighing the black hole in NGC4258 – Myoshi et al. 1995.

> velocity and motion of water maser gas clouds permit:

Mass of Black hole ~
 10^7 Msun.

DISTANCE of NGC
 4258 => Ho

VLBI Brings the Universe to life...

VLBA 22 GHz Observations of 3C120

José–Luis Gómez IAA (Alan P. Marscher BL Antonio Alberdi IAA (Svetlana Marchenko–Jorstad BL Cristina García–Miró IAA (

IAA (Spain) BU (USA) IAA (Spain) BU (USA) IAA (Spain)

A Decade of Expansion of SN1993J

J.M. Marcaide, A. Alberdi, I. Martí–Vidal, E. Ros, et al.

© J.M. Marcaide, Universitat de València, 2004

The Very Large Array (VLA)

Wide Frequency range up to 50 GHz

Good sensitivity ~ 6uJy in 12 hrs (8.4 GHz) 25-m dimater antennas on rails -Baseline 1 - 36 km

see <u>www.nrao.edu</u>

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Other Interferometer Arrays

Radio Sources in the Solar system

Thermal emission from the quiet sun

Bi-static radar image of Mercuty

Synchrotron emission from Jupiter (before and after comet SL9 impact

Radio Net skaps

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)

Galactic Centre

(NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

NET

RO

Galactic PNe, SNRs, Novas, PSRs

Other Galactic sources (stars, exo-solar systems, masers X-ray binaries)

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Nearby Galaxies (cont & HI) – WSRT – Braun et al.

(NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

HI in Galaxies - emission & Absorption

Dynamics of stars, neutral gas (HI) and ionised gas:

HI absorption against bright AGN reveals outflow and inflow of gas

The magnetic Universe...

Polarised Radio emission:

SPECIAL: Just about the only way to study magnetic fields in the ISM, in galaxies, & AGN

AGN – Imaging on all scales – M87 an example

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Many other examples of powerful radio galaxies

Powerful radio galaxies usually associated with Elliptical galaxies

Sec. 9 3.334

Norden maja (davilar) 1964

The silent majority – faint radio sources

As you go deeper in the radio, the Universe comes towards you!

Resolution still important for these faint sources... Star forming galaxies - radio emission on galactic/sub-galactic scale e.g. M82 M82 Starburst Galaxy – observed with increasing RESOLUTION

Extended emission on kpc scale SNe and SNR on tens of pc.

VLA/MERLIN 18cm Resolution =0.75 arcsec

European VLB1 Network 18cm Resolution = 0.015 arcsec

@Radio-FIR Spectral Energy Distribution of "Normal" Galaxies (e.g. Milky Way, M82):

Both Radio and FIR (sub-mm at high reshift) are sensitive measures sures of MASSIVE Star formation in the local and distant galaxies.

Radio and sub-mm observations closely allied in the study of the DUSTY High-z Universe.

Going even deeper... microJy source population A few areas of sky studied at uJy levels (e.g. HDF-N, Muxlow et al. 2005)

MicroJy sensitivity Universe begins to move away from us – high-z

The fainstest radio sources dust obscured – no optical id – Sub–mm associations – Good ASTROMETRY – SPECIAL

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Radio Interferometry & Cosmology

CMB experiments – interferometry offers many advantages...

SPECIAL: Noise is independant for each antenna – disappears during correlation e.g. RFI –

Gravitational lensing – Ho

High resolution of radio interferometers makes them idea for detecting and imaging resolved gravitational lens phenomena

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY

Gravitational lens surveys

Radio surveys ideal for finding lenses...

Source population typically at high-z

Seperation ~ 1 arcsec

Flat spectrum radio sources rare.

E

1 N

Gravitational lensing – also MAGNIFIES sources

Radio

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONO

EUROPEAN

Lenses as giant cosmic magnifying glasses: Magnification permits us to detect comologically distant star forming galaxies e.g. Garrett et al. 2005; Berciano Alba et al. (2007); Garrett et al. (in prep).

Total magnification of cluster is x45

Source is a intrinsically faint, z=2.5 SMG & uJy radio source – undetectable without the lens..

(NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

More [lensed] distant star-forming galaxies

Berciano alba et al. (2007)

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

Most luminous Ly-break Galaxy (8 o'clock lens)

Garrett et al. in prep (2007)

(NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY)-

The Future...

Activity is intense!

Many telescope upgrades in progress: EVLA, e-MERLIN, e-VLBI (2009)

Many NEW telescope arrays under construction (pathfinders for the Square Km Array): ATA, LOFAR, MWA, ASKAP, MeerKAT.

Key issues are cost and field-of-view:

Aperture Arrays – multiple, independent, simultaneous beams (LOFAR)

LOFAR (ASTRON)

E-LOFAR Expansion of LOFAR into Europe...

40 stations

Current status: Germany ~12 stations UK ~2-3 stations Italy ~2 stations France ~1 station? Other EVN sites...

LOFAR first images (see Ger de Bruyn's lecture)

Amazing Field of view – superb survey instrument – if we can calibrate it!

Understanding the Universe

Amazing Field of view – superb survey instrument – if we can calibrate it!

Maybe possible to detect leakage radiation from neaby Extra-terrestrial Civilisations...

Stacking 32000 G-type stars (NVSS)

3uJy noise level ==> leakage from planet >> G-type stars

There has never been a better time to do...

RADIO ASTRONOMY!