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Introduction

• Output from radio arrays (VLA, VLBI, MERLIN 
etc) is just a table of the correlation (amp. & 
phase)  measured on each baseline every few 
seconds.

• To make a good image, steps are
– Initial calibration (few %)
– Data editing, averaging
– Making image (Fourier transform) 
– Deconvolution
– Refining calibration (self cal)
– Final image

• Often, all steps essential to make even a 
recognisable image



Automation

• Automated scripts (pipelines) have been developed 
(MERLIN, EVN, VLA, VLBI)
– Used for archives
– Essential for large surveys
– In regular use for MERLIN, EVN for calibration and initial 

imaging
• But…

– Can be sensitive to data errors
– Adapted to experiment design
– Fourier Tranform & deconvolution (mapping) are flexible:

• Can be controlled depending on aims of experiment, type of 
image, quality of data, nature of radio source etc etc

– Need to understand process and experiment with your 
data



• Array provides  (poorly) sampled Fourier 
Transform of the radio brightness region of sky

• u,v are the co-ordinates in the aperture plane, or 
visibility plane, perpendicular to the direction to the 
object, measured in wavelengths. 

• At any instant the separation vector between each pair of 
telescopes can be plotted as a point in the visibility plane  

• l.m are sky co-ordinates

• Assumed small region to be mapped
2D transform

– Region << individual antenna beam

• If V measured for all u,v to ±∞, inverse FT would yield 
I(l.m)

• We have set of samples of V(u,v). Define sampling 
function S(u,v) = 1 at measured (u,v), zero elsewhere

Indirect imaging

V (u, v) =
RR
I(l,m)e2πi(ul+vm)dldm



• Initial image is inverse transform of 
sampled visibility function

using the convolution theorem

where 

is the Point Spread Function
response of array to a unit point source at 
the origin

General description of an imaging system
Sometimes quite benign (HST)
But a severe limitation for radio arrays

Will want to minimize its effect

I 0(x, y) = B(x, y) ∗ I(x, y)

Convolution theorem

I 0(x, y) = F−1[S(u, v)V (u, v)]

B(x, y) = F−1S(u, v)



Illustration
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Fourier Transforms

• Information distributed across the Fourier Plane
• Sky is real, therefore uv plane is symmetric (Hermitian)
• Single point in image -> const amplitude, phase gradient in u-

v plane, with slope dependent on distance from origin 
– Shift theorem

• Phase is important
• Single point in (u,v)-> sine-wave ripple in image
• Short baselines (small u,v) -> large scale smooth features

– Smooth emission > 1/umin invisible
– Interferometers filter out smooth emission

• Long baselines (large u,v) -> fine scale structure, sharp edges
– Resolution is 1/umax

• Gaps in u-v plane produce sidelobes of the PSF



Fourier Transform Phase
Party Trick

Rick Linda



FFT and Gridding

• Fast Fourier Transform 
(FFT) much faster to 
compute than DFT
– For NxN image

DFT:few x N4 ops
FFT:few x N2 logN

• Requires V’(u,v) to be 
interpolated on to regular 
grid of 2N x 2M points

• Automatically generates 
an NxM pixel image

• In practice, specify the 
image grid as NxM pixels 
with a cellsize approx 
1/3 of the expected 
resolution.
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uv plane
Grid spacing: Δu
Size: umax

Image
Grid spacing:
1/(umax)
Size: 1/(Δu)



Gridding (2)

• Convolve measured points with some narrow 
function C (width ~ Δu), then resample on 
regular grid, then FFT

• In uv-plane: convolved with C and multiplied
with III (series of δ-functions)
Image is multiplied with FT(C) and convolved
with III
Multiplication slight taper at edge of image: easily 

corrected by 1/[FT(C)]
Replication aliasing: emission outside region defined 

by FFT of uv grid appears inside image
[Fundamentally a result of undersampling: the uv cells 

are too large because the image region is too small]



Gridding by convolution



Gridding and aliasing (3)

• Choice of convolution function
– Rectangle, width Δu (cell averaging)

• FT is sinc(πΔul)
– Gaussian, width ~ Δu

• FT is Gaussian width 1/Δu
– Ideally want rectangle in image plane – would 

remove aliasing
• but then the convolving function would be sinc(Δu), 

with envelope falling as 1/(Δu ) would have to evaluate 
at every cell.

– Compromise: sinc x Gaussian convolving kernel
– Optimum: spheroidal function [non-analytic, look-up 

table]



Gridding (4)



Dirty map & dirty beam

• Obtain initial image (dirty image) by gridded FFT of 
visibility data

• Dirty image = True image * Dirty Beam (PSF)
• Properties of Dirty Beam

– Response to a unit point source
– FT of sampling in uv plane 
– Central maximum has width 

1/(umax) in x  and 1/(vmax) in y
– Has ripples (sidelobes) 

• Rms ~ 1/N (antennas)
• Close-in sidelobes: determined by envelope of uv points
• Far-out sidelobes due to gaps in uv coverage

I 0(x, y) = B(x, y) ∗ I(x, y)



uv coverage and dirty beam

VLA 
snapshot

MERLIN
track



Recovering true image
Deconvolution

• I’ = I*B  V’=V.S
• Cannot use linear deconvolution (eg Wiener filter), 

because S(u,v) is zero in unsampled parts of uv plane
• Need to ‘guess’ FT of true image in these regions
• Many different images whose FTs consistent with 

measured points but behave differently in the gaps
• The Dirty map is just the one which is zero at all these 

points
• How to select the ‘right’ or ‘best’ one
• Non-linear deconvolution methods try to do this

as a result they interpolate into the unsampled parts of 
the uv plane 



Extra information

• Choose ‘best image’ using 
a priori information. 
– Sky is positive

– Sky is often mostly empty 
with a few localised sources

– Individual regions of the sky 
may have smooth 
distribution of emission

• Best fit problem subject to 
constraints



CLEAN

• Natural response to the problem, when 
faced with typical early images of 
compact radio sources … subtract off 
Dirty Beam

• Procedure
– Produce Dirty Image, Dirty Beam
– Locate peak in dirty image
– Record position and intensity

CLEAN COMPONENTS 
– Subtract scaled & shifted dirty beam

RESIDUAL IMAGE
– Locate next peak …
– Continue until residual = noise
– Convolve clean components with clean 

beam (Gaussian fit to central dirty 
beam)

– Add to residual map
CLEAN IMAGE



CLEAN demo
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CLEAN demo in uv plane



CLEAN demo in uv plane



CLEAN demo in uv plane
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CLEAN demo in uv plane



CLEAN demo in uv plane



CLEAN demo in uv plane



CLEAN demo in uv plane



CLEAN demo in uv plane





Using  CLEAN

• Using windows
– Restrict areas where clean components can be found
– Simple way to add stronger a priori information
– Significant impact for extended sources where uv coverage is poor
– User bias…

• Choice of loop gain
– Usually 0.05 -0.1

• When to stop
– CLEAN will happily deconvolve the noise
– Noise-only map has features (FT only non-zero on S(u,v))
– Generally reduces apparent noise
– CLEAN bias for VLA snapshots (FIRST survey)

• Adding zero spacing
– Should help for extended sources; rarely used
– NB total flux in DM = V(0,0) = 0



Variants of CLEAN

• Classic Clean due to Högbom (1974)
• Clark Clean

– In image plane, use a restricted ‘beam patch’ for 
subtracting a number of clean components

– Then do full subtraction of this set in visibility plane 
(FFT)

– Back to image plane and locate next set  
– ~10x faster

• Cotton-Schwab
– As above but so subtraction from un-gridded data 

(DFT). More accurate, can work on multiple fields at 
once



CLEAN problems

• Well suited to isolated, compact sources
– Sidelobe pattern easily recognised, sources well 

represented by modest number of delta functions

• Might fail for very extended, smooth emission
– Well-known ‘stripe’ instability
– Subtraction of sidelobe pattern from smooth region 

generates ripples, reinforced by further subtraction



Weighting

• After gridding not all cells 
equal
– Some receive many more 

points than others
• For earth-rotation 

synthesis, rate of traversing 
cells scales with baseline 
length. 

• Long baselines can ‘clip’
cells

– Some baselines (telescopes) 
may be more sensitive 
(VLBI, MERLIN)
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Weighting (2)

• Can optimise sensitivity
– Wi=1/(σi

2) … taking into account points/cell and 
individual point weights

– ‘Natural weighting’
• highest weight on shorter baselines, so reduces 

resolution (makes dirty beam broader)
• Discontinuity in weights – higher sidelobe levels

• Can minimize sidelobes
– Wi=1/(ρ(u,v))

• Optimum resolution and sidelobe level
• Reduced sensitivity
• ‘Uniform’ or inverse density weighting



Weighting affects dirty beam

Natural Uniform



Weighting affects dirty beam

Natural Uniform



Robust weighting

• Developed by Briggs (1995)
• Combine inverse density and 

noise weighting
• Possible to get (almost) best of 

both worlds
• Adjust using ‘robust’ parameter 

in IMAGR
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Alternative deconvolution methods

• Maximum Entropy Method (MEM)
– Primary contraint is to maximimize the ‘Entropy’

• Smoothest image which fits the measured data
• Simplest (minimum information) image which fits the 

data

• Non-negative least squares (NNLS)
– Primary constraint is positivity



Maximum Entropy Method

• Strong philosophical basis in information theory (Jaynes, 
Gull & Daniell); consistent treatment of prior information

• Maximise

• Practically: works well for extended emission, produces 
smoother results than CLEAN
– Can be faster for large images

• Imagine single smooth component

– Does not cope well with point sources + smooth background
– Can use both; CLEAN to remove bright points; MEM on 

smoother residual image

( ) ( )∑ ⋅−=
k

kkk mIIIH log



AIPS IMAGR
• Well developed and well-trusted 

implementation of Cotton-Schwab CLEAN with 
many enhancements (multiple fields, robust 
weighting,…)

• Input is (calibrated) visibility file
– Applies calibrations
– Uses convolution to grid data, applying specified 

weighting 
– Produces Dirty Map, Dirty Beam
– Performs certain number of CLEAN subtractions

• Clean Component Table, Residual Map
– Convolves Clean Components with Clean Beam and 

adds Residual Map
– Writes out Clean Map as image file, with CC table 

attached



IMAGR parameters

• Simple use for single frequency, total intensity data:
• IMSIZE … size of image in pixels: 256 - 2048
• CELLSIZE … pixel size in arcsec ~ 0.3 x resolution
• NITER … can be fixed number of subtractions eg 1000; 

can control interactively with DOTV, or can stop when 
FLUX limit reached

• Options
– RASHIFT, DECSHIFT: move the centre of the field
– ROBUST: modify the weighting
– CLBOX (or set in DOTV mode) windows
– NFIELD > 1, RASHIFT, DECSHIFT … multiple fields at the 

same time
– BMAJ, BMIN: set the CLEAN beam yourself

• Often made circular ~ sqrt(Bx.By)


	Basic Mapping�Simon Garrington JBO/Manchester
	Introduction
	Automation
	Indirect imaging
	Convolution theorem
	Illustration
	Fourier Transforms
	Fourier Transform Phase�Party Trick
	FFT and Gridding
	FFT and Gridding
	Gridding (2)
	Gridding by convolution
	Gridding and aliasing (3)
	Gridding (4)
	Dirty map & dirty beam
	uv coverage and dirty beam
	Recovering true image�Deconvolution
	Extra information
	CLEAN
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	CLEAN demo in uv plane
	 Using  CLEAN
	Variants of CLEAN
	CLEAN problems
	Weighting
	Weighting
	Weighting (2)
	Weighting affects dirty beam
	Weighting affects dirty beam
	Robust weighting
	Robust weighting
	Alternative deconvolution methods
	Maximum Entropy Method
	AIPS IMAGR
	IMAGR parameters

