Low frequency interferometry (< 400 MHz)

Ger de Bruyn

ASTRON, Dwingeloo

& Kapteyn Institute, Groningen

Acknowledgements:

ionospheric slides: James Anderson & Bob Campbell (JIVE), Perley, Lazio a.o RFI : Albert-Jan Boonstra, Stefan de Koning, Others: Gianni Bernardi , Frank Briggs

Outline:

- some history
- ionosphere
- low frequencies FOV are large --> all-sky imaging
- non-isoplanaticity and selfcalibration over wide fields
- bandwidth, RFI and noise
- polarization issues
- classical confusion issues

Roots of Radio Astronomy lie at LOW frequencies

(see e.g. WCE74 symposium, Santa Fe, Sep 04, Ed Kassim et al)

1932	20 MHz	Karl Jansky	
1940-45		Grote Reber	
1948-1962	178 MHz	Cambridge (3C, 4C) (Ryle	
1965-1980	26 - 57 MHz	Clark Lake (California, Bill Erickson)	
1975-1990	38 MHz	Cambridge (e.g. 8C)	
Many other telescopes: Puschino, UTR2-Ukraine, Ooty, Gauribidanur, Nancay-DAM, Mauritius, Texas, Arecibo, (10 - 365 MHz)			

Modern sensitive interferometers (dishes)

WSRT:	270 - 390 MHz	later also	115-180 MHz
VLA	300 - 350 MHz	later also	74 MHz
GMRT	150, 232, 325 MHz	future 50) MHz

Future arrays (of dipoles!)

LOFAR	(NL-Europe)	10 - 240 MHz	100 - 1000km
LWA	(New Mexico US)	10 - 80 MHz	400 km (?)
MWA	(Western-Australia)	80 - 300 MHz	1.5 km
SKA		<100> 20000 MH	lz (?)

Arrays of dipoles provide enormous flexibility: electronic beamforming and 'software telescope' e.g. LOFAR

5.6/11.2 GF/s

Principles:

- a) $\underline{\mathbf{E}}$ is detected, interference can be performed (off-line) in computer
- b) No quantum shot noise: extra copies of the signal are free!

Consequences:

- a) Can replace <u>mechanical</u> beam forming by <u>electronic</u> signal processing
- b) Put the technology of radio telescopes on *favorable cost curve*
- c) Also: multiple, independent beams become possible

Low frequency radio astronomy has been done for 50 years: what is new ?

Well,...

- 1) We want to do it with ~1000x better sensitivity (i.e. to thermal noise)
- 2) with an appropriate image quality (>10⁴ dynamic range)
- 3) at a resolution of 0.25-1.0 arcsec over the whole sky,
- 4) do it in full polarization and do spectroscopy at z=10,
- 5) record down to 5 nanosec resolution,
- 6) In somewhat harsh RFI conditions,
- 7) and do this for many users simultaneously !!

So there are a few challenges ahead !!

Low frequency astronomy requires imaging and (self)calibrating the whole sky ! That is both good and bad.

For example at 100 MHz:

- 1) Telescope HPBW ~ 1.3 λ /D ~ 10° for D=25m (VLA, WSRT)
- 2) There are very bright sources, e.g. the A-team:

Sun > 10,000 - 1000,000 Jy CasA, CygA ~ 10,000 Jy

VirgoA, TauA ~ 1000 Jy

- 3) Distant sidelobe levels are typically -20 to -30dB (= 0.01 0.001)
- 4) Thermal sensitivity of an array < ~ 1 mJy after 12h
- For phased arrays (like LOFAR) this is even 'worse': a dipole 'sees' most of the sky down to the horizon . Telescope made up from arrays of dipoles, e.g. through analog or digital beamforming, certainly need to worry about the whole sky.

Some relevant past VLBI - low frequency experiments

	frequency	baseline	sources
Clark et al (1975)	111 MHz	2500 km	3C286,287
Hartas et al (1983)	81 MHz	1500 km	3C48,147,216,380
Global VLBI (>1980)	327 MHz	~ 8000 km	hundreds

The sensitivity of the system was such that we could measure the fringe visibility of 3C 48 (73.2 Jy at 81.5 MHz) with a signal-to-rms noise ratio of about 50:1 in the absence of scintillation on short baselines in 100 s, using eight antennas in each polarization at the remote site.

3 The observations

We observed a total of 33 of the brightest 3C radio sources between 1981 June and 1982 September. The results will be analysed in detail elsewhere; here we present our measure-

Very simple 'images' were made at 81 MHz with a portable dish in 1981-82

Hartas et al, MNRAS 205, 625 (1983)

The sky at 150 MHz

Landecker and Wielebinski, 1970

Radio astronomical imaging (which works at diffraction limit ~ λ /D) is possible only once we 'control' phase-stability.

Phase corruptions have two main parts:

- instrument (geometry+electronics)
- atmosphere = troposphere +ionosphere

Troposphere (0-10 km): phase $\propto v$

Ionosphere (100-1000 km): phase $\propto v^{-1}$

Typically equal contributions at baselines of 10 km at ~ 1 GHz

So at ~100 MHz the ionosphere is our worst enemy.

Reason to look at ionosphere in detail. !

Ionosphere

Ionospheric density profile

- Solar radiation ionizes during daytime
- Recombination at night
- --> Egg-shaped structure inside which Earth rotates
 - --> refracting wedges at disk and dawn
- Peak electron density around 300 km
- Plasma frequency: 9 kHz $\sqrt{n_e}$
- Ionosphere reflecting at $\nu < 3-10$ MHz

Vertical Total Electron Content behaviour

- 1 TECUnit = 10^{12} el/cm²
- Typically 5-10 TECU at intermediate latitudes. Much higher at equator
- 1 TECU causes:

4/3 turn of phase at 1 GHz

40/3 turns at 100 MHz !!

- Ionization fraction slightly lags Solar noon
- Electrons raised in equatorial fountain fall along flux lines to either side of equator

Slant Total Electron Content for Westerbork (Bob Campbell, JIVE)

- Vertical TEC at left
- Slant TEC upper right
- TEC values very large near horizon

Slant Total Electron Content for Westerbork: Afternoon

Slant TEC at left
Triangles

show locations of GPS satellites

Interferometry basics plus ionosphere

Ionospheric wedge model

- Assume differential delay related to ionospheric density GRADIENT, so $\varphi = (x_1 x_2) * K$
- Depends on BASELINE length, not station or ionosphere POSITION

Gradient model breaks down for long baselines

- For stations at great distances, large-scale ionospheric structure and ionospheric waves cause gradient approach to fail
- Gradient approach also fails for large angular separations on sky

Ionospheric delay over the VLA (74 MHz)

phase behaviour can get very ugly !

TID =

Travelling Ionospheric Disturbance

(caused by Acoustic Gravity Wave)

Typical timescales 10-15m

Speeds 500 km/h

Occur at ~ 250 km height (bottom F1 layer)

Lazio, 2005: data from Perley

GPS Data show same TIDs measured with WSRT at 140 MHz (CygA, Dec06)

Dealing With a Variable Ionosphere: Waves

- Simulated VLA observation with sinusoidal ionospheric wave
- Large position motions replicated
- Beam shape changes replicated
- 2 sinusoidal waves in different directions reproduce the complex behavior of actual observations

element FOV ~ 22°

Very high dynamic range imaging of Cyg A at 141 MHz with the WSRT low frequency receivers

CONT (B=0.5 MHz)

LINE (10 kHz) - CONT

RFI = Radio Frequency Interference

Issues:

- usable spectrum (time-frequency occupancy)
- linearity and saturation

lots of monitoring data, preparing for LOFAR

Main sources of RFI (Europe)

- TV 50 700 MHz
- FM radio 88 108 MHz
- Digital Audio Broadcast (spread spectrum, 174 -230 MHz, Europe)
- Satellites (amateur, military, weather,...
- Receiver/computer electronics (i.e. often your own RFI !)
- Mobile services
- Many signals, but not all, are very narrowband (~ 1 kHz)

RFI data in the Netherlands (not untypical for Europe)

frequency 135-265 MHz

Max. observed RFI signal level: ~ -110 dBWm⁻²Hz⁻¹ ~ 10^{15} Jy (at 169 MHz) $0 \text{ dB}\mu\text{Vm-1}, \Delta f=1 \text{ kHz}$: ~ -176 dBWm⁻²Hz⁻¹ (at 150 MHz) ~ -201 dBWm⁻²Hz⁻¹ ~ 10⁶ Jy (at 150 MHz) Antenna sky noise level ~ -219 dBWm⁻²Hz⁻¹ ~ 10⁴Jy (at 150 MHz) CasA/ CygA

Initial LOFAR antenna measurement results (July 2006) NB: analog TV 180-188 MHz disappeared in Dec 06!))

LOFAR dingle dipole monitoring at 1s, 1 kHz

LOFAR RFI mitigation approach

Spectrum allocation and use

DAB-T, band III Drenthe/Groningen ▶ 6, 7C, 11C, 12C

Friesland/Overijssel ≻ 5A, 9, 11B

Lower Saxony: ▶ 5C, 5D, 10, 11A, 12A, 12B DAB-T, band III. 174-230 MHz, ch.5-12. 7 MHz channels split into four 1.75 MHz channels A-D. Ch.5: 174-181 Ch.9: 202-209 Ch.6: 181-188 Ch.10: 209-216 Ch.7: 188-195 Ch.11: 216-223 Ch.8: 195-202 Ch.12: 223-230

Scattering at low frequencies: worrying?

Density fluctuations in ionized medium --> refractive index changes

Cause: waves (which cascade to) turbulence: Kolmogorov: $P \propto k^{-5/3}$

Observational consequences:

Scattering angular size	θ_{ISS}	\propto	λ ^{2.2}
Angular resolution:	θ	\propto	λ / L _{max}
> the maximum 'useful' baseline scales as:	L _{max}	x	λ-1.2

Multipath scattering leads to time-smearing (pulsars): $\Delta t \propto \lambda^{4.4}$ Decorrelation bandwidth is the inverse of this

Contributions to scattering

- IGM ?
- ISM strong Galactic latitude dependence
- IPM depends on Solar elongation /Solar cycle
- Ionosphere occasional periods of scintillations

Strong versus Weak scattering

Parameters: screen distance, turbulence level C_N^2 , wavelength, transverse velocities

Transition between weak to strong scattering when R_{diff} <~ R_{Fresnel}

- Strong (= diffractive) size << 1μ arcsec (Pulsars, Planets, Flarestars ?
- Weak (= refractive) almost everything else (AGN, ...)

Polarized radio emission

Linear polarization at (very) low frequencies

New frontier !

Great diagnostic value

Faraday rotation: $\Delta \Phi \propto \int n_e B_{//} dI \cdot \lambda^2$

Contributions: - source

- intervening plasmas (IGM,ISM)
- ionosphere (time variable part!)

Low frequency polarimetry; technical aspects:

Propagation and instrumentation lead to various depolarization effects:

→ beam	\rightarrow use longer baselines
	(WSRT 3 km, VLA-GMRT 30 km, LOFAR ~ 100 - 1000 km)
\rightarrow bandwid	\rightarrow use multi-channel backends
\rightarrow depth	ightarrow separate Faraday (thin/thick) layers in RM-space

Use wide-field RM synthesis. (Coherent addition of polarization vectors)

Beam depolarization due to spatial RM- gradients around source or intervening media

- 1) ISM RM-gradient of 1 rad/m² per degree
- --> at 50 MHz: 34°/ arcmin
- --> NO PROBLEM with standard LOFAR-100km
- 2) source RM-gradient of 1 rad/m² per arcmin (e.g. double-double giant B1834+62)
- --> at 50 MHz: 34° / arcsec
- --> this requires ~1000 km baselines.

Bandwidth depolarization:

 $d(\Delta \theta_{Far}) \sim 2 \text{ RM} \cdot \lambda^2 \cdot \Delta v / v \qquad (\propto v^{-3} !)$

at 150 MHz: 0.03° / kHz for RM=10 rad/m² 50 0.8 30 3.8

LOFAR will have 1 kHz resolution

--> RM synthesis techniques usable and required

An example of the use of RM-synthesis,

RM-synthesis at still lower frequency

Ionospheric Faraday rotation variability

WSRT-LFFE

dawn gradient in angle rotation

at 117 MHz ~ 2.5°/ minute

→ at 60 MHz ~ 10° / minute → at 30 MHz ~ 40° / minute

Nightly variations of ionospheric Faraday rotation variations PSRJ0218+4232

Classical source confusion at (very) low frequencies

