

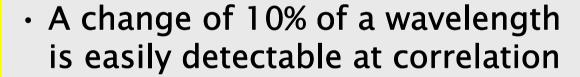
Astrometric Interferometry

P. Charlot Laboratoire d'Astrophysique de Bordeaux

Outline

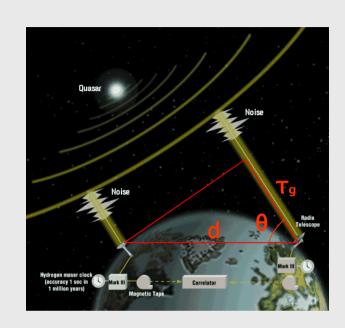
- VLBI observables for astrometry
- VLBI modeling
- Reference frames and surveys (ICRF, VCS)
- Organisation for data acquisition and processing (IVS)
- Phase-referenced astrometry

Astrometric potential of VLBI



Geometric time delay

$$c \tau_g = d \cos \theta$$


 Variation of time delay with source direction:

$$\Delta \tau_g = - (d/c) \sin \theta \, \Delta \theta$$
$$=> \Delta \theta = - (c/d \sin \theta) \, \Delta \tau_g$$

$$\Delta \tau_g = 0.1 \lambda / c$$

$$=> \Delta \theta = - (0.1 \lambda / d \sin \theta)$$

Assuming:

d=5000 km

 λ = 3.6 cm

 $\Delta\theta = 0.14 \text{ mas/sin}\theta$

→ directions theoretically measurable by VLBI to ~ 0.2 mas

Astrometric VLBI observables (1)

· Phase delay

$$\tau_{\phi} = \phi/\omega$$
 $\phi = \text{fringe phase}$ $\omega = 2\pi\nu$ $\nu = \text{frequency (e.g. 8 GHz)}$

- Φ only known modulo 360° \rightarrow T_{Φ} ambiguous
- Interpretation of the phase requires resolving the inherent ambiguity (i.e. determining the number of phase cycles)
- Prediction of the number of cycles requires a very accurate geometric model (< 20 ps or 5 mm at 8 GHz)
- But, generally not the case... $=> T_{\phi}$ cannot be used directly

Error in phase delay:

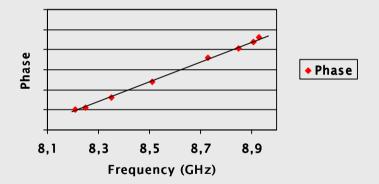
$$\sigma_{\tau_{\phi}} = (1/\omega) \ \sigma_{\phi} = (1/\omega) \ \cdot \ (1/SNR)$$

The phase delay VLBI observable is very accurate but ambiguous

$$v = 8.4 \text{ GHz}, \text{ SNR} = 50$$

=> $\sigma_{\tau_{\phi}} = 0.4 \text{ ps (0.1 mm)}$

Astrometric VLBI observables (2)



Group delay

$$\tau_{\text{group}} = \partial \phi / \partial \omega$$

- T_{group} not ambiguous (unlike T_φ)
- In practice, Tgroup is determined by fitting a straight line to the sequence of phases measured at several "discrete" frequencies

Error in group delay:

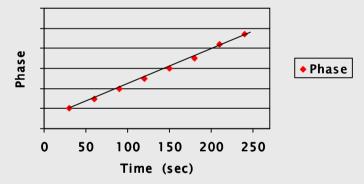
$$\sigma_{Tgroup} = \sigma_{\phi} / (2\pi \Delta v_{rms}) = 1 / (2\pi \Delta v_{rms} SNR)$$

The group delay is less accurate than the phase delay but not ambiguous

$$\Delta v_{rms} = 0.3 \text{ GHz}, \text{ SNR} = 50$$

=> $\sigma_{Tgroup} = 10 \text{ ps (3 mm)}$

Astrometric VLBI observables (3)



Phase delay rate (fringe frequency)

$$\dot{\tau}_{\Phi} = \partial \tau_{\Phi} / \partial t = (1/\omega) \partial \Phi / \partial t$$

- • †
 • not ambiguous
- $\cdot \dot{\tau}_{\Phi}$ is determined by fitting a straight line to the sequence of phases measured over time (a few minutes)

• Error in phase delay rate:

$$\sigma_{t_{\phi}} = (1/\omega) \sigma_{\phi} / \Delta t_{rms} = 1/(2\pi \nu \Delta t_{rms} SNR)$$

Angular sensitivity of VLBI observables

Assuming:
$$d = 5000 \text{ km}$$
, $\lambda = 3.6 \text{ cm}$, $SNR = 50$, $\Delta v_{rms} = 0.3 \text{ GHz}$, $\Delta t_{rms} = 60 \text{ s}$

Phase delay

$$\sin \theta \Delta \theta(T_{\phi}) = (1/2\pi) \cdot (\lambda/d) \cdot (1/SNR) => 0.005 \text{ mas}$$

Group delay

$$\sin \theta \Delta \theta(T_{group}) = (1/2\pi) \cdot (\lambda/d) \cdot (\nu/\Delta \nu_{rms}) \cdot (1/SNR) = > 0.13 \text{ mas}$$

Phase delay rate

$$\cos \theta \, \Delta \theta (\dot{\tau}_{\varphi}) = (1/2\pi) \cdot (\lambda/d) \cdot (1/\omega_e \, \Delta t_{rms}) \cdot (1/SNR) => 1.1 \, mas$$
 (ω_e = angular velocity of the Earth's rotation)

The primary astrometric VLBI observable is the group delay (also called « bandwidth synthesis » delay)

VLBI observing mode for astrometry

- Duration of experiments: 24 hours
- Dual-band observations to calibrate ionosphere (8.4/2.3 GHz)
- Bandwidth:
 - 8 frequencies at X band spead over 720 MHz (8.2–8.9 GHz)
 - 6 frequencies at S band spread over 125 MHz (2.22–2.35 GHz)
- 6–10 telescopes
- Observe ~ 50 different sources with a few scans on each source =>a few thousand delay observations
- For each measured quantity (τgroup or τ̄φ), calculate corresponding theoretical model
 - => Form O-C (observed calculated) and estimate parameters of interest (e.g. source coordinates,...)
- Software: CALC/SOLVE (NASA), MODEST (JPL), OCCAM (Europe)

VLBI modeling

· Observables:

$$\tau_{\text{group}} = \partial \phi / \partial \omega$$
, $\dot{\tau}_{\phi} = (1/\omega) \partial \phi / \partial t$

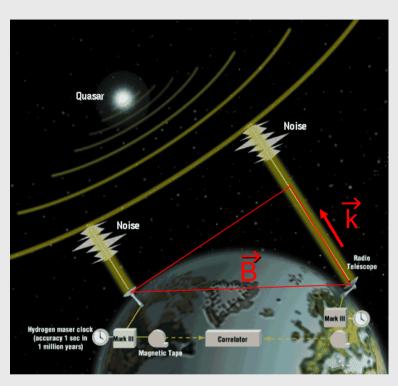
VLBI model (τ_{group} abbreviated as τ)

$$T = T_g + T_{inst} + T_{trop} + T_{ion} + ...$$

 τ_g = geometric delay

 $\tau_{inst} = instrumental delay$

 $\tau_{trop} = tropospheric delay$


 $\tau_{ion} = ionospheric delay$

VLBI modeling: geometric delay τ_g

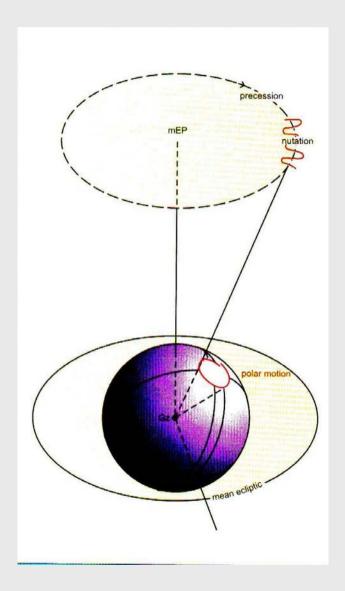
$$T_q$$
 max = 0,02 s

$$\tau_g = -(1/c) \stackrel{\rightarrow}{k} \stackrel{\rightarrow}{.} \stackrel{\rightarrow}{B} [...]$$

- $\cdot \overrightarrow{B}_{cel} = Q (\overrightarrow{B}_{ter} + \overrightarrow{\Delta B}_{ter})$
- Relativistic effects at the level of 10⁻⁸ s
- $\overrightarrow{\Delta B}_{ter}$ depends on:
 - Tectonic motions
 - Solid Earth tides
 - · Ocean loading
 - Atmospheric loading
 - ...

Q = rotational transformation of coordinates from the terrestrial frame to the celestial frame

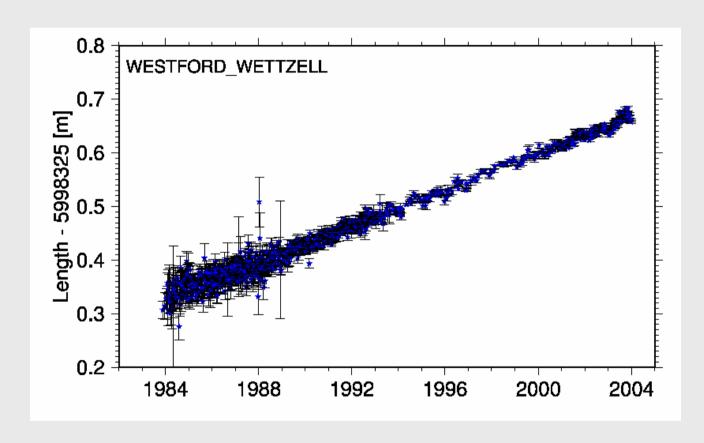
VLBI modeling: Earth's orientation



Q = PNUXY

- · X, Y: polar motion
- U: rotation of the Earth around its axis (UT1-UTC)
- N: nutation
 \rightarrow consists of several hundreds of periodic terms
- P: precession

Q transforms a vector from the terrestrial frame to the celestial frame



VLBI modeling: plate tectonic motions

Evolution of the distance between Westford (USA) and Wettzell (Germany) between 1984 and 2004

VLBI modeling: instrumental delay τ_{inst}

- The instrumental delay comprises two terms:
 - The delay caused by the shift between the clocks at the two stations

$$\tau_{clock} = \tau_{clock2} - \tau_{clock1}$$

 The delay caused by propagation time in cables and etectronics at each station

$$\tau_{prop} = \tau_{prop2} - \tau_{prop1}$$

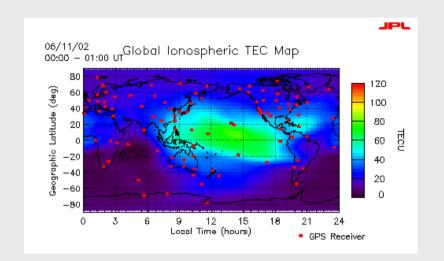
In practice, the instrumental delay $T_{inst} = T_{clock} + T_{prop}$ is modeled by a linear or quadradic function with the coefficients estimated from the VLBI observations.

VLBI modeling: tropospheric delay τ_{trop}

- Ttrop may be separated into two components
 - The dry component: ~ 7 ns at zenith (210 cm) -> may be predicted to ~ 1cm from meteorological data
 - The wet component: < 1 ns at zenith (30 cm)
 - -> difficult to predict, quickly variable
- Modeling
 - For each station i: $T_{trop i} = T_{trpz i} R(H_i)$ T_{troz} i = zenith tropospheric delay R = mapping function (H_i = elevation)
 - Differential effect

$$T_{\text{trop}} = T_{\text{trop 2}} - T_{\text{trop 1}}$$

- In practice
 - τ_{troz i} estimated from the VLBI data


VLBI modeling: ionospheric delay τ_{ion}

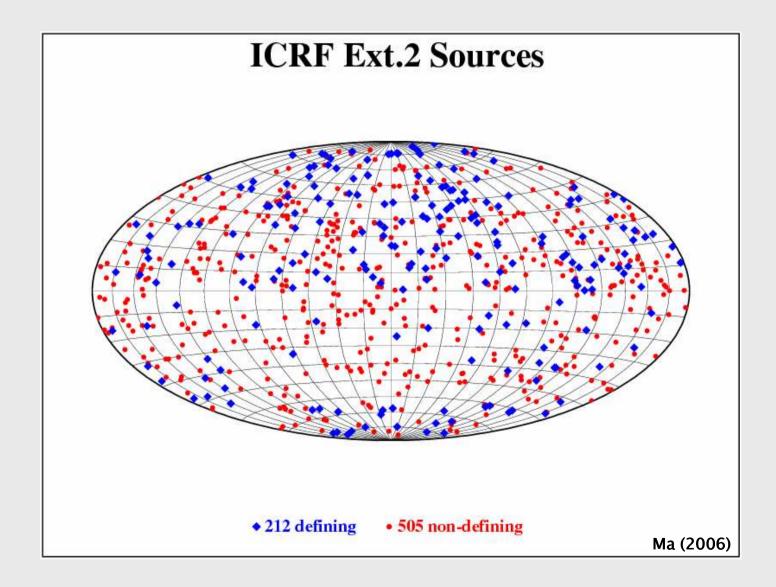
- Depends on the total electronic content (TEC) above telescopes
- Diurnal cycle
- Proportional to $1/v^2$
- Differential effect

$$\tau_{\text{ion}} = \tau_{\text{ion 2}} - \tau_{\text{ion 1}}$$

In practice:

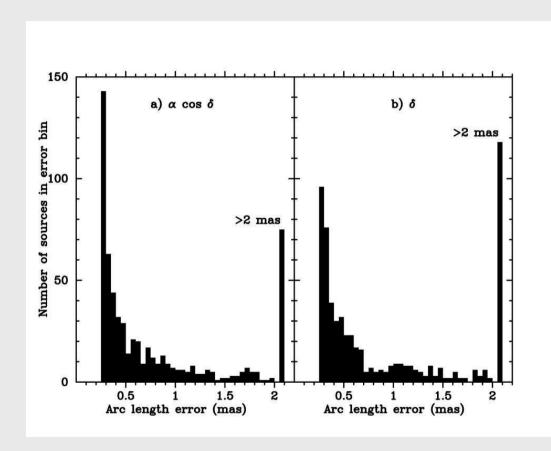
 τ_{ion} removed by linear combination of the delays measured at 2.3 GHz (S band) and 8.4 GHz (X band)

The International Celestial Reference Frame



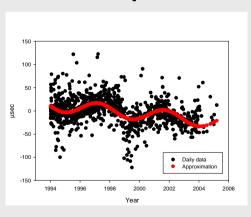
- ICRF (International Celestial Reference Frame) built in 1995 by a Working Group of the IAU (Ma et al. 1998)
- Based on all VLBI astrometric/geodetic data acquired between 1979 and 1995
- 1.6 Million pairs of group delay and phase delay rate observations
- ICRF comprises 608 extragalactic sources
 - 212 defining sources
 - · 294 candidate sources
 - 102 other sources
- Orientation of frame consistent with optical FK5 system
- ICRF-Ext.1 (1999) and ICRF-Ext.2 add another 59 + 50 sources => 717 sources today

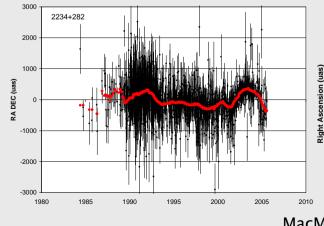
ICRF sky distribution

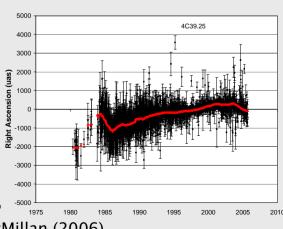


ICRF position accuracy

Individual source position accuracy: ≥ 0.25 mas

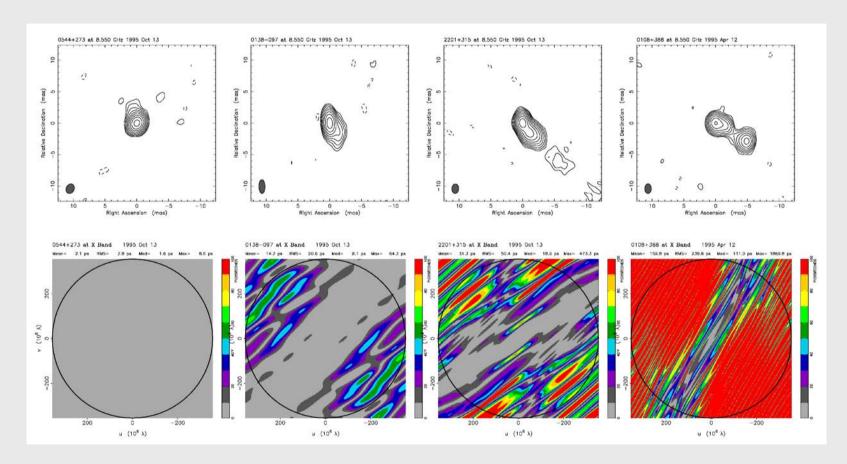

Orientation of reference frame known to 0.02 mas


Future: ICRF-2



- Currently being built by a Working Group of the IAU and IVS
- · Should be presented at IAU 2009 General Assembly
- · Will add all VLBI data acquired since 1995
- Improved modeling (troposphere)
- Improved source categorisation
 - => accounts for source position variability and source structure to identify defining sources
- Source position variability

Titov (2006)


MacMillan (2006)

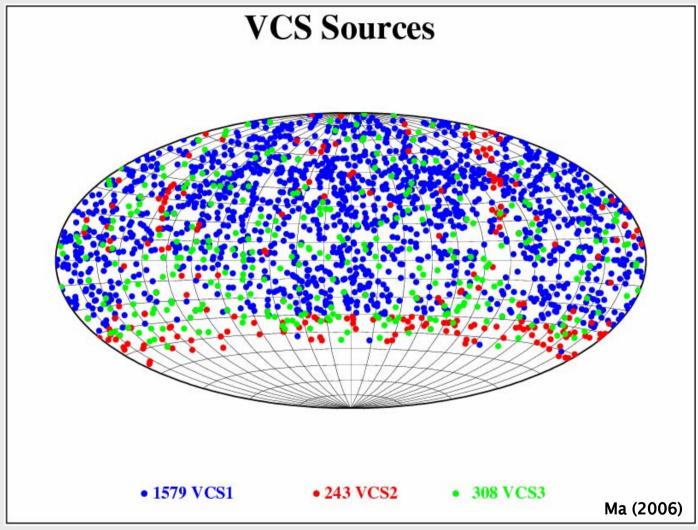
Future: ICRF-2

· Impact of source structure on the VLBI group delay

Four « structure index » categories defined to identify the most compact sources

Charlot (2002)

The VLBA Calibrator Survey (VCS)



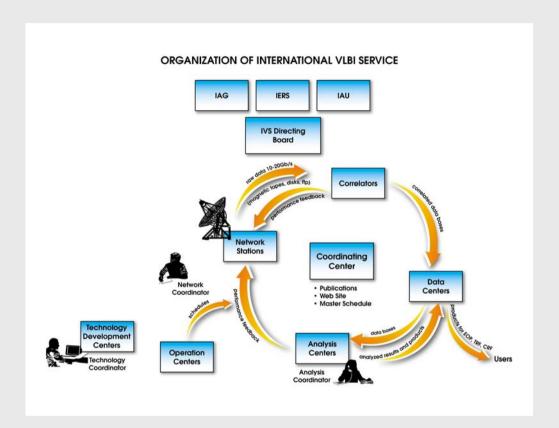
- Based on a series of VLBA experiments conducted since 1994
- Most of the sources observed only in one experiment
- Declination > -45°
- Milliarcsecond position accuracy
- Successive steps:
 - · VCS1: 1579 sources (Beasley et al. 2002)
 - VCS2: 243 sources (Fomalont et al. 2003)
 - VCS3: 308 sources (Petrov et al. 2005)
 - VCS4: 258 sources (Petrov et al. 2006)
 - VCS5: 569 sources (Kovalev et al. 2006)
- Includes VLBI images as well
- Provides a dense grid of calibrators for phasereferencing

VCS sky distribution

+ 258 VCS4 + 569 VCS5 (not shown)

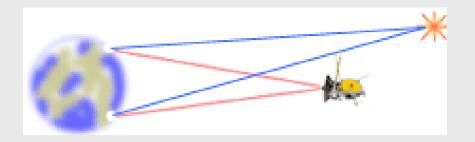
International VLBI Service for Geodesy and Astrometry

> 30 institutes around the world


International VLBI Service for Geodesy and Astrometry

IVS monitors...

- the celestial frame
- the Farth's orientation
- the terrestrial frame


IVS observing

- Several 24-hour sessions conducted each week
- Additional 1 to 2 hour sessions every day for Earth rotation
- Data immediately available from IVS data centres

Phase-referenced astrometry

- Observe alternately a target and an angularly-close (~1°) calibrator
 - · target: e.g. weak extragalactic source, stellar object, spacecraft,...
 - · calibrator: e.g. ICRF or VCS source
 - cycle calibrator/target of a few minutes
- Then, differentiate the measured phases for the calibrator and target
 - do not require phase connection
 - modeling errors scale with calibrator/target angular separation
- · Permits accurate relative (narrow-angle) astrometry
 - see talk/demo by A. Brunthaler tomorrow...

The end

Thanks!