Theory of Spectral Line Radio Interferometry
- Some science, some theory & some practice

Rob Beswick [JBCA/Manchester]
Outline

• Why do spectral line (multi-channel) observations?
 - Potential science goals
• What do we have to consider?
 - Proposals & planning
 - Potential problems & solutions
• The observations
• Data reduction
• Presentation of the results
Spectral-line (=) multi-channel

• Spectral line observations were originally observations of spectral lines
 - i.e. Radio Spectroscopy

• But now it is also common to observe even continuum in “spectral-line mode”
 - Enables imaging of wide-fields of view (see Tom Muxlow’s lecture on Tuesday)

liğ i.e. Multi-channel Observations

• In the future, all observations will be taken in this mode!
Why spectral line-mode?

First and foremost Science driven

Spectral Line Science - This lecture and

Wide-field imaging - Lecture on tuesday
Some spectral line science

• With Radio interferometry we can observe various radio lines both in emission (inc Masers) and absorption

• Providing PHYSICAL information
 - Gas composition, column densities, temperature tracers, density tracers, velocity fields etc..
 • Basically physics.

• Gas is important as it is the fuel that makes the stars & feeds accretion
Giving you a 3rd axis

- Sample the frequency axis
 - Gets you velocity information
 - Estimate the amount of gas
 - And some handle on excitation condition
 - And even the chemical history

- Result is not a map, but a cube
 - In: α, δ, v or α, δ, ν
 - A challenge to handle
 - Often VERY large data-sets
 - Recent EVN experiments $>$100GB
 - A challenge to visualize
 - Channel maps and movies
 - Moment maps: intensity, velocity, width
 - 3D rendering and visualization software...

- A challenge to analyze...
 - Model for structure & kinematics
 - Optical depth effects
 - Excitation: collisions vs radiation
 - Masers amplify these in a non-linear way

M33 VLA HI
Velocity colour coded

Thilker, Braun, & Walterbos
Important radio lines

Radio spectral lines below 1THz designated as ‘important’ by the IAU

<table>
<thead>
<tr>
<th>No.</th>
<th>Line Description</th>
<th>Frequency</th>
<th>No.</th>
<th>Line Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Deuterium (D) 327.384 MHz</td>
<td></td>
<td>41.</td>
<td>Carbon monoxide (C17O) 112.359 GHz</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Hydrogen (H) 1420.406 MHz</td>
<td></td>
<td>42.</td>
<td>Carbon monoxide (CQ) 115.271 GHz</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Hydroxyl radical (OH) 1612.231 MHz</td>
<td></td>
<td>43.</td>
<td>Formaldehyde (H213CO) 137.450 GHz</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Hydroxyl radical (OH) 1665.402 MHz</td>
<td></td>
<td>44.</td>
<td>Formaldehyde (H2CO) 140.840 GHz</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Hydroxyl radical (OH) 1667.359 MHz</td>
<td></td>
<td>45.</td>
<td>Carbon monoxide (CS) 146.969 GHz</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Hydroxyl radical (OH) 1720.530 MHz</td>
<td></td>
<td>46.</td>
<td>Water vapour (H2O) 183.310 GHz</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Methylidyne (CH) 3263.794 MHz</td>
<td></td>
<td>47.</td>
<td>Carbon monoxide (C18O) 219.560 GHz</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Methylidyne (CH) 3338.481 MHz</td>
<td></td>
<td>48.</td>
<td>Carbon monoxide (13CO) 220.399 GHz</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Methylidyne (CH) 3349.193 MHz</td>
<td></td>
<td>49.</td>
<td>Carbon monoxide (GO) 230.538 GHz</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Formaldehyde (H2CO) 4829.660 MHz</td>
<td></td>
<td>50.</td>
<td>Carbon monoxide (CS) 244.953 GHz</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Methanol (CH2OH) 6668.518 MHz</td>
<td></td>
<td>51.</td>
<td>Hydrogen cyanide (HNC) 271.981 GHz</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Ionized Helium Isotope (3HeII) 8665.650 MHz</td>
<td></td>
<td>52.</td>
<td>Dyazenulium (N2H+) 279.511 GHz</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Methanol (CH3OH) 12.178 GHz</td>
<td></td>
<td>53.</td>
<td>Carbon monoxide (C18O) 312.330 GHz</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Cycloprenylidene (C3H2) 18.343 GHz</td>
<td></td>
<td>55.</td>
<td>Carbon monoxide (CS) 342.883 GHz</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Water Vapour (H2O) 22.235 GHz</td>
<td></td>
<td>56.</td>
<td>Carbon monoxide (GO) 345.796 GHz</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Ammonia (NH3) 23.694 GHz</td>
<td></td>
<td>57.</td>
<td>Hydrogen cyanide (HNC) 354.484 GHz</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Ammonia (NH3) 23.723 GHz</td>
<td></td>
<td>58.</td>
<td>Formylium (HCO+) 265.886 GHz</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Ammonia (NH3) 23.870 GHz</td>
<td></td>
<td>59.</td>
<td>Dyazenulium (N2H+) 356.734 GHz</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Silicon monoxide (SiO) 42.519 GHz</td>
<td></td>
<td>60.</td>
<td>Water vapour (H2O) 380.197 GHz</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Silicon monoxide (SiO) 42.821 GHz</td>
<td></td>
<td>61.</td>
<td>Carbon monoxide (C18O) 439.088 GHz</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Silicon monoxide (SiO) 42.880 GHz</td>
<td></td>
<td>62.</td>
<td>Carbon monoxide (13CO) 440.765 GHz</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Silicon monoxide (SiO) 43.122 GHz</td>
<td></td>
<td>63.</td>
<td>Carbon monoxide (CS) 461.041 GHz</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Silicon monoxide (SiO) 43.424 GHz</td>
<td></td>
<td>64.</td>
<td>Heavy water (HDO) 464.925 GHz</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Carbon monosulphide (CS) 48.991 GHz</td>
<td></td>
<td>65.</td>
<td>Carbon (CI) 492.162 GHz</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Deuterated formylium (DCO+) 72.039 GHz</td>
<td></td>
<td>66.</td>
<td>Water vapour (H218O) 547.676 GHz</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Silicon monoxide (SiO) 86.243 GHz</td>
<td></td>
<td>67.</td>
<td>Water vapour (H218O) 556.936 GHz</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Formylium (H13CO+) 86.754 GHz</td>
<td></td>
<td>68.</td>
<td>Ammonia (15NH3) 572.113 GHz</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Silicon monoxide (SiO) 86.847 GHz</td>
<td></td>
<td>69.</td>
<td>Ammonia (NH3) 572.498 GHz</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Ethynyl radical (C2H) 87.300 GHz</td>
<td></td>
<td>70.</td>
<td>Carbon monoxide (CO) 691.473 GHz</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Hydrogen cyanide (HNC) 88.635 GHz</td>
<td></td>
<td>71.</td>
<td>Hydrogen cyanide (HNC) 797.433 GHz</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Formylium (HCO+) 89.189 GHz</td>
<td></td>
<td>72.</td>
<td>Formylium (HCO+) 802.653 GHz</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Hydrogen isocyanide (HNC) 90.664 GHz</td>
<td></td>
<td>73.</td>
<td>Carbon monoxide (GO) 806.652 GHz</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Diacylenyl (N2H) 93.174 GHz</td>
<td></td>
<td>74.</td>
<td>Carbon (CI) 809.350 GHz</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Carbon monosulphide (CS) 97.981 GHz</td>
<td></td>
<td>75.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Carbon monoxide (C18O) 109.782 GHz</td>
<td></td>
<td>76.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Carbon monoxide (13CO) 110.201 GHz</td>
<td></td>
<td>77.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus various others (e.g. Radio Recombination lines etc)
Important radio lines

Radio spectral lines below 1THz designated as 'important' by the IAU+

<table>
<thead>
<tr>
<th>Number</th>
<th>Line Description</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deuterium (D)</td>
<td>327.384</td>
</tr>
<tr>
<td>2</td>
<td>Hydrogen (H)</td>
<td>1420.406</td>
</tr>
<tr>
<td>3</td>
<td>Hydroxyl radical (OH)</td>
<td>1612.231 MHz</td>
</tr>
<tr>
<td>4</td>
<td>Hydroxyl radical (OH)</td>
<td>1665.402 MHz</td>
</tr>
<tr>
<td>5</td>
<td>Hydroxyl radical (OH)</td>
<td>1667.359 MHz</td>
</tr>
<tr>
<td>6</td>
<td>Hydroxyl radical (OH)</td>
<td>1720.530 MHz</td>
</tr>
<tr>
<td>7</td>
<td>Methylidyne (CH)</td>
<td>3263.794</td>
</tr>
<tr>
<td>8</td>
<td>Methylidyne (CH)</td>
<td>3335.481</td>
</tr>
<tr>
<td>9</td>
<td>Methylidyne (CH)</td>
<td>3349.193</td>
</tr>
<tr>
<td>10</td>
<td>Formaldehyde (H2CO)</td>
<td>4629.660 MHz</td>
</tr>
<tr>
<td>11</td>
<td>Excited OH</td>
<td>6030.747</td>
</tr>
<tr>
<td>12</td>
<td>Excited OH</td>
<td>6035.092</td>
</tr>
<tr>
<td>13</td>
<td>Methanol (CH3OH)</td>
<td>12.178</td>
</tr>
<tr>
<td>14</td>
<td>Ionized Helium Isotope (3He II)</td>
<td>8665.650 MHz</td>
</tr>
<tr>
<td>15</td>
<td>Methanol (CH3OH)</td>
<td>12.178 GHz</td>
</tr>
<tr>
<td>16</td>
<td>Formaldehyde (H2CO)</td>
<td>14.385 GHz</td>
</tr>
<tr>
<td>17</td>
<td>Cyclopropenylidene (C3H2)</td>
<td>18.343 GHz</td>
</tr>
<tr>
<td>18</td>
<td>Water Vapour (H2O)</td>
<td>22.235 GHz</td>
</tr>
<tr>
<td>19</td>
<td>Ammonia (NH3)</td>
<td>23.694</td>
</tr>
<tr>
<td>20</td>
<td>Ammonia (NH3)</td>
<td>23.723</td>
</tr>
<tr>
<td>21</td>
<td>Ammonia (NH3)</td>
<td>23.870</td>
</tr>
<tr>
<td>22</td>
<td>Silicon monoxide (SiO)</td>
<td>42.519 GHz</td>
</tr>
<tr>
<td>23</td>
<td>Silicon monoxide (SiO)</td>
<td>42.821 GHz</td>
</tr>
<tr>
<td>24</td>
<td>Silicon monoxide (SiO)</td>
<td>42.880 GHz</td>
</tr>
<tr>
<td>25</td>
<td>Silicon monoxide (SiO)</td>
<td>43.122 GHz</td>
</tr>
<tr>
<td>26</td>
<td>Silicon monoxide (SiO)</td>
<td>43.424 GHz</td>
</tr>
<tr>
<td>27</td>
<td>Carbon monosulphide (CS)</td>
<td>48.991 GHz</td>
</tr>
<tr>
<td>28</td>
<td>Deuterated formylium (DCO+)</td>
<td>72.039 GHz</td>
</tr>
<tr>
<td>29</td>
<td>Silicon monoxide (SiO)</td>
<td>86.243 GHz</td>
</tr>
<tr>
<td>30</td>
<td>Formylium (H13CO+)</td>
<td>86.754 GHz</td>
</tr>
<tr>
<td>31</td>
<td>Silicon monoxide (SiO)</td>
<td>86.847 GHz</td>
</tr>
<tr>
<td>32</td>
<td>Ethynyl radical (C2H)</td>
<td>87.300 GHz</td>
</tr>
<tr>
<td>33</td>
<td>Hydrogen cyanide (HCN)</td>
<td>88.632 GHz</td>
</tr>
<tr>
<td>34</td>
<td>Formaldehyde (HCO+)</td>
<td>89.189 GHz</td>
</tr>
<tr>
<td>35</td>
<td>Hydrogen isocyanide (HNC)</td>
<td>90.664 GHz</td>
</tr>
<tr>
<td>36</td>
<td>Diazenylium (N2H)</td>
<td>93.174</td>
</tr>
<tr>
<td>37</td>
<td>Carbon monosulphide (CS)</td>
<td>97.981 GHz</td>
</tr>
<tr>
<td>38</td>
<td>Carbon monoxide (C18O)</td>
<td>109.782 GHz</td>
</tr>
<tr>
<td>39</td>
<td>Carbon monoxide (13CO)</td>
<td>110.201 GHz</td>
</tr>
<tr>
<td>40</td>
<td>Carbon monoxide (C17O)</td>
<td>112.359 GHz</td>
</tr>
<tr>
<td>41</td>
<td>Carbon monoxide (CO)</td>
<td>115.271 GHz</td>
</tr>
<tr>
<td>42</td>
<td>Formaldehyde (H213CO)</td>
<td>137.450 GHz</td>
</tr>
<tr>
<td>43</td>
<td>Formaldehyde (H213CO)</td>
<td>140.840 GHz</td>
</tr>
<tr>
<td>44</td>
<td>Carbon monosulphide (CS)</td>
<td>146.969 GHz</td>
</tr>
<tr>
<td>45</td>
<td>Water vapour (H2O)</td>
<td>163.312 GHz</td>
</tr>
<tr>
<td>46</td>
<td>Carbon monoxide (13CO)</td>
<td>218.540 GHz</td>
</tr>
<tr>
<td>47</td>
<td>Carbon monoxide (13CO)</td>
<td>220.399 GHz</td>
</tr>
<tr>
<td>48</td>
<td>Carbon monoxide (CO)</td>
<td>230.938 GHz</td>
</tr>
<tr>
<td>49</td>
<td>Carbon monosulphide (CS)</td>
<td>244.953 GHz</td>
</tr>
<tr>
<td>50</td>
<td>Hydrogen cyanide (HCN)</td>
<td>265.886 GHz</td>
</tr>
<tr>
<td>51</td>
<td>Formylium (HCO+)</td>
<td>267.357 GHz</td>
</tr>
<tr>
<td>52</td>
<td>Hydrogen isocyanide (HNC)</td>
<td>271.981 GHz</td>
</tr>
<tr>
<td>53</td>
<td>Dyesen (N2H)</td>
<td>279.511 GHz</td>
</tr>
<tr>
<td>54</td>
<td>Carbon monoxide (13CO)</td>
<td>312.330 GHz</td>
</tr>
<tr>
<td>55</td>
<td>Carbon monoxide (13CO)</td>
<td>310.587 GHz</td>
</tr>
<tr>
<td>56</td>
<td>Carbon monosulphide (CS)</td>
<td>342.853 GHz</td>
</tr>
<tr>
<td>57</td>
<td>Carbon monoxide (CO)</td>
<td>345.796 GHz</td>
</tr>
<tr>
<td>58</td>
<td>Carbon monoxide (CO)</td>
<td>345.796 GHz</td>
</tr>
<tr>
<td>59</td>
<td>Hydrogen cyanide (HCN)</td>
<td>354.484 GHz</td>
</tr>
<tr>
<td>60</td>
<td>Formylium (HCO+)</td>
<td>356.734 GHz</td>
</tr>
<tr>
<td>61</td>
<td>Dyesen (N2H)</td>
<td>372.672 GHz</td>
</tr>
<tr>
<td>62</td>
<td>Water vapour (H2O)</td>
<td>380.197 GHz</td>
</tr>
<tr>
<td>63</td>
<td>Carbon monoxide (13CO)</td>
<td>433.088 GHz</td>
</tr>
<tr>
<td>64</td>
<td>Carbon monoxide (13CO)</td>
<td>440.765 GHz</td>
</tr>
<tr>
<td>65</td>
<td>Carbon monoxide (CO)</td>
<td>461.041 GHz</td>
</tr>
<tr>
<td>66</td>
<td>Heavy water (H218O)</td>
<td>464.925 GHz</td>
</tr>
<tr>
<td>67</td>
<td>Carbon (CD)</td>
<td>492.162 GHz</td>
</tr>
<tr>
<td>68</td>
<td>Water vapour (H218O)</td>
<td>547.676 GHz</td>
</tr>
<tr>
<td>69</td>
<td>Water vapour (H218O)</td>
<td>556.936 GHz</td>
</tr>
<tr>
<td>70</td>
<td>Ammonia (13NH3)</td>
<td>572.113 GHz</td>
</tr>
<tr>
<td>71</td>
<td>Ammonia (NH3)</td>
<td>572.491 GHz</td>
</tr>
<tr>
<td>72</td>
<td>Carbon monoxide (CO)</td>
<td>691.473 GHz</td>
</tr>
<tr>
<td>73</td>
<td>Hydrogen cyanide (HCN)</td>
<td>797.433 GHz</td>
</tr>
<tr>
<td>74</td>
<td>Formylium (HCO+)</td>
<td>802.853 GHz</td>
</tr>
<tr>
<td>75</td>
<td>Carbon monoxide (CO)</td>
<td>816.862 GHz</td>
</tr>
<tr>
<td>76</td>
<td>Carbon (CD)</td>
<td>809.350 GHz</td>
</tr>
</tbody>
</table>

Plus various others (e.g. Radio Recombination lines etc)
Observing gas - resolution achievable with interferometer

- H1 emission gives ~>5" (VLA, WSRT etc)
- mm synthesis (CO) gives ~>0.5-1"
 - IRAM, KARMA, SMA
- Via Absorption (H1, OH etc)
 up to arcsec-to-mas
 - WSRT, VLA, MERLIN, VLBI etc
- Masers (e.g. OH, H2O, SiO)
 up to arcsec-to-<mas
 - VLBI, MERLIN etc
- FUTURE instruments such as SKA & ALMA will add more...
Types of spectral line observations

• **Emission experiments (non-stimulated)**
 - *E.g.* H1 emission, CO etc
 〇 Low T_B implies lower resolution (for H1)

• **Absorption experiments**
 - Various lines (e.g. H1, OH etc)
 〇 Requires a Background source
 〇 T_B is that of the background source implies can be observed at high resolution (VLBI, MERLIN etc)

• **Maser experiments (Stimulated emission)**
 - *E.g.* OH, methanol, water, SiO
 〇 Stimulated emission requires certain physical conditions
 〇 Can be very high T_B implies VLBI sources
Radio observations of HI at high resolution

- Small brightness temperature \(T_b \sim 100 \text{K} \)
- Small beam
- Large wavelength
- Narrow bandwidth (line width)
- Rayleigh-Jeans equation implies that

\[
S = \frac{2 k T_b \Omega_b}{\lambda^2}
\]

- HI Emission studies are limited to resolutions \(\sim \text{few arcseconds at best} \).

H1 emission in NGC4151 (Mundell et al '99)
The advantages of absorption studies

- **Absorption line strength**
 - Determined by the brightness temperature of the background
 - Many Active Galaxies emit Synchrotron $T_b > 10^5$ K
 - (compare with 100K excitation temperature for H1)

- **Angular resolution**
 - arcsecs- few mas 100pc- <1pc
 - Limited by the detectability of the background

- **Geometry** - Absorber must be in front!
 - ie Blueshift must = expansion
 - & Redshift=infall
Science examples
Large scale gas distribution

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution 21 cm HI Distribution Numerical simulations
M82 H1 absorption

Continuum plus line

M82 HI (Wills, Pedlar et al)
M82 H1 Optical depth

M82 HI
Optical Depth
Continuum subtracted cube

M82 OH – 1665 & 1667 lines - masers & absorption
VLA A-array data (Argo et al 2007)

Two lines in band
Absorption in black
Masers in blue

Note ringing about the brightest 1667MHz maser
See latter
Example 1: H\textsc{I} Absorption in 3C293

- Extensive MERLIN H\textsc{I} absorption
- Eastern side: Narrow absorption
- Western side: Broad(er) absorption
- Opacities \(~0.01\)
- $N_H \sim 10^{21}$ atoms$^{-1}$

14th September 2007
3C293 H1 rotating gas ring??

- On ~200mas angular scales. Velocity gradient centred upon the core(?)
 - Multi component (0.5 kpc ring/disk?)

- However stepping up the resolution the absorption breaks up many composite components.
- Lack of illuminating background continuum.
Example of multiple lines: NGC3079 - Seyfert 2 +(nuclear starburst?)

- MERLIN 1.4GHz
- H1
- Nuclear H1 absorption
- MERLIN 5GHz
- OH
- Nuclear OH absorption
- Maser?
- H2CO
- Nuclear H2CO absorption

14th September 2007
NGC3079 (Sy2): MERLIN H1 absorption

VLBI 5GHz continuum plus water masers (Kondratko et al '05)

- H2O Maser disk

0.5 pc

Moment 1
Medusa Merger: Dust Lane in CO & H1

- Note also that the dust lane is co-spatial with the CO emission (Aalto & Huttemeiser '00)

- Implies probable association of dust lane, CO, and H1.

- And all are probably in front of the radio cont.
CO & H1 Velocity fields

- Sub arcsecond H1 velocity field
- ~ north-south vel. grad.
- Some twisting and detail now visible in the H1 velocity field.
Fuelling of the Starburst?

- Most of the gas & dust resides toward south of the source.
- Whereas the majority of the star formation is to the N & NW.
- Gas circulation from the dust lane to the SF regions.
- & Lowest H1 absorption columns toward north of radio source.
 - Gas & dust in reservoir in dust lane region.
 - Less gas in front of the northern radio source.
- i.e. gas being circulated with some being converted to stars.
Planning an experiment

- **Know your science Goals**
- **Lines to be observed**
 - What is the observing frequency (redshifted)
- **Instruments**
 - Which observe the correct frequency?
 - Resolution required?
 - Sensitivity required?
Aside: Velocity/distance conventions & Doppler tracking

• The redshifted/blueshifted velocity of a source is a crucial number as this dictates what sky frequency a line is observed.
 - Getting it wrong by a small amount means you can miss your line completely and waste all that precious telescope time! (believe me I know!)
Aside: Velocity/distance conventions & Doppler tracking

- Red or blue-shifted velocities are usually quoted in either the 'Radio' or 'Optical' conventions. These are approximations of the relativistic Doppler equation.

- **Relativistic** \rightarrow
 \[
 v = c \frac{v_0^2 - v^2}{v_0^2 - v^2}
 \]

- **Optical approx** \rightarrow
 \[
 v_{\text{Optical}} = c\left(\frac{v_0}{v} - 1\right) = c\left(1 - \frac{\lambda_0}{\lambda}\right) = cz
 \]

- **Radio approx** \rightarrow
 \[
 v_{\text{Radio}} = c\left(1 - \frac{v}{v_0}\right)
 \]

These are not the same and diverge as redshift increases.
Rest Frames

<table>
<thead>
<tr>
<th>Correct for</th>
<th>Amplitude</th>
<th>Rest frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing</td>
<td>0 km/s</td>
<td>Topocentric</td>
</tr>
<tr>
<td>Earth rotation</td>
<td>< 0.5 km/s</td>
<td>Geocentric</td>
</tr>
<tr>
<td>Earth around Sun (inc barycenter earth-moon)</td>
<td>< 30 km/s</td>
<td>Heliocentric ≈ barycentric</td>
</tr>
<tr>
<td>Sun peculiar motion (inc planets barycenter)</td>
<td>< 20 km/s</td>
<td>Local Standard of Rest</td>
</tr>
<tr>
<td>Galactic rotation</td>
<td>< 300 km/s</td>
<td>Galactocentric</td>
</tr>
</tbody>
</table>

- **Correcting these motions done in array model**
 - Usually part of fringe stopping in connected elements
 - But VLBI done with fixed frequency
 - Alignment must be done later, even off-line
 - Taking into account details of the correlator model
 - Otherwise narrow (maser) lines may be 'blurred'
Aside: Velocity/distance conventions

• These velocities then need to be corrected relative to a rest frame:
 - Earth surface is not a good rest frame because of diurnal (rotation) and annual (orbit about the sun) motions. Up to ~0.5km/s & 30km/s respectively
 - Common rest frames used in Astronomy are
 • Local Standard of Rest
 - Various definitions used. E.g. the solar system barycentre is moving at 20 km/s in the direction of (RA,DEC) = 18 hours, +30 degrees (B1900) (this is called "kinematic" definition of the LSR)
 - Mainly used in Galactic work
 • Barycentric
 • Heliocentric (very close but slightly different to Barycentric)
 - Most extragalactic work uses these solar system based rest frames.
Aside: Velocity/distance conventions

• **Summary:**
 - Know what your source velocity is and what convention is used.

 • Radio-LSR -- Mainly Galactic work

 or

 • Optical-heliocentric -- Mainly extragalactic work
An example 1 - experiment

• I want to observe cold neutral gas (H1) in a merging galaxy (say Arp220) at the sub-arcsecond resolution, in order to separate the two merging nuclei.

1. Observing frequency?
 • observe H1 line, rest-freq=1420.406MHz
 • Arp220 is at a distance of 78Mpc
 • $V_{\text{opt-hel}}=5434\text{km/s} \rightarrow \text{sky freq }=1395.0..\text{MHz}$
Choose an interferometer

• Need sub-arcsec resolution
 - → VLBI or/and MERLIN
 - → these arrays do not have a brightness temperature sensitivity
 - → is there absorption?
 • YES!
 • Is there enough background continuum?
 • Yes!

- THEN LET'S OBSERVE H1 IN ABSORPTION.... With MERLIN or VLBI?
Configuration: e.g. MERLIN correlator

Table 4.4: Relationship between the number and the width of frequency channels for 1 polarization (LL or RR), 2 polarizations (LL and RR) or all 4 polarizations (LL, RR, LR, RL).

<table>
<thead>
<tr>
<th>B' width (MHz)</th>
<th>Max No. channels</th>
<th>Channel width (kHz)</th>
<th>Velocity resolution at 1420 MHz (km s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per correlator card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1024</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>4</td>
<td>0.96</td>
</tr>
<tr>
<td>0.5</td>
<td>1024</td>
<td>1</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>4</td>
<td>0.96</td>
</tr>
<tr>
<td>1</td>
<td>1024</td>
<td>1</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>2</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>4</td>
<td>3.91</td>
</tr>
<tr>
<td>2</td>
<td>512</td>
<td>1</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>2</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>4</td>
<td>15.63</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>1</td>
<td>15.63</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>2</td>
<td>31.25</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>4</td>
<td>62.50</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>1</td>
<td>62.50</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>2</td>
<td>125.00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4</td>
<td>500.00</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>1</td>
<td>250.00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2</td>
<td>500.00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4</td>
<td>1000.00</td>
</tr>
</tbody>
</table>

Notes: (1) If there are ≤ 5 antennas in use e.g. at 22 GHz then twice the number of channels per bandwidth are available.
Bandwidth/spectral resolution

• **Choose Band- & channel- width**
 - to fully cover line and provide some additional non-line channels for continuum
 - Enough channels \rightarrow Higher enough spectral resolution to sample the line.
 - Sensitivity??
 - sensitivity per channel *not* for the whole bandwidth to line.
 - If observing Continuum at same time need to bare in mind how much 'line-free' continuum bandwidth
Configuration: MERLIN correlator

Table 4.4: Relationship between the number and the width of frequency channels for 1 polarization (LL or RR), 2 polarizations (LL and RR) or all 4 polarizations (LL, RR, LR, RL).

<table>
<thead>
<tr>
<th>B^'width (MHz)</th>
<th>Max No. channels per correlator card</th>
<th>Channel width (kHz)</th>
<th>Velocity resolution at 1420 MHz (km s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.25</td>
<td>1024</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>0.5</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>1024</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>512</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes: (1) If there are \(\leq 5 \) antennas in use e.g. at 22 GHz then twice the number of channels per bandwidth are available.
Then results!
Resolution, Brightness & Sensitivity

• What an interferometer can do
 - Give you resolution (spatial & spectral)
 - Sensitivity to brightness regime
 - No sensitivity for smooth structures
 - Lower limit for unresolved source
 - Filter for certain radiative processes
 - VLBI looks at high energy universe
 - At mm waves one can study cold universe with sub-arcsecond resolution

• Express the sensitivity of interferometer: T_b
 - Array with N identical dishes of size A is given by:

\[
\Delta S_v = \frac{\sqrt{2k_b T_{\text{sys}}}}{\eta_a \eta_c A \sqrt{\Delta t \Delta \nu} \sqrt{\frac{1}{2} N(N-1)}}.
\]

\[
\Delta T_v \approx \sum A_{\text{synth}} T_{\text{sys}} \frac{A_{\text{tel}} \eta_a \eta_c \sqrt{\Delta t \Delta \nu}}{\sum A_{\text{tel}} \eta_a \eta_c}
\]
The observations & prepare observing schedules

1. Check observing frequency/velocity
2. Include bandpass calibrators (need good SNR)
 1. Multiple scans through the run
 2. Bandpass calibrator
 - flux on all baselines
 - Simple structure
 - May be able to use flux cal sources for low res arrays
3. Phase & flux cals etc
Data calibration & analysis

• Bandpass

• Continuum subtraction (see also demo)

• Visualisation & analysis (more in demo)
Spectral Bandpass:

• Spectral frequency response of antenna to a spectrally flat source of unit amplitude

- Ideal bandpass

- Bandpass in practice

- Edge roll-off
 Caused by shape of baseband filters

• Shape due primarily to individual antenna electronics/transmission systems
• Different for each antenna
• Varies with time, but much more slowly than atmospheric gain or phase terms
Bandpass calibration

In general, the goal of calibration is to find the relationship between the observed visibilities, V_{obs}, and the true visibilities, V:

$$V(t, \nu)_{\text{obs}} = V(t, \nu)G(t)B(t, \nu)$$

- where t is time, ν is frequency, i and j refer to a pair of antennas (i,j) (i.e., one baseline), G is the complex "continuum" gain, and B is the complex frequency-dependent gain (the "bandpass").

- **Bandpass calibration** is the process of deriving the frequency-dependent part of the gains, $B(t, \nu)$ (i.e., the spectral response function).

- $B(t, \nu)$ may be constant over the length of an observation, or it may have a slow time dependence.

- **Bandpass calibration attempts to correct for the deviations of the observed bandpass from the "ideal" one.**
Flux scale/BPass & autocorrelations

- Initial flux scale determination as for continuum
 - EVN using T_{sys}; MERLIN using 3C286
- Edit Radio Freq. Interference (SPFLG, IBLED)
 - Inspect XCs (local interference decorrelates)
 - If very bad consider editing ACs (VLBI)
 \rightarrow Terrestrial interference antenna-based
- Use of AC template for bandpass amp cal. (VLBI)
 - Select short good period, average ACs all antennas
 - Advantage: no danger of resolving-out flux
 - Problems: much worse effects of RFI on ACs
 - T_{sys} errors exacerbated in heterogenous array
 \rightarrow not recommended for EVN, MERLIN & similar?
- Retain scale from initial calibration
 - If poss. also use point/mappable source of known flux
Example bandpasses

Plot file version 4 created 07-SEP-2007 17:12:01
1331+305 20020427.LINE.1
Freq = 1.6653 GHz, Bw = 6.250 MH
Bandpass table # 1

Upper frame: Bandpass table spectrum Antenna: *
Top frame: BP phase
Lower frame: BP ampl
Bandpass Calibration: Why is it important?

The quality of the bandpass calibration is a key limiting factor in the ability to detect and analysis of spectral features.

- Bandpass amplitude errors may mimic changes in line structure with ν.
- ν-dependent phase errors may lead to spurious positional offsets of spectral features as a function of frequency, mimicking doppler motions of the emitting/absorbing material.
- ν-dependent amplitude errors limit ability to detect/measure weak line emission superposed on a continuum source (simply subtracting off the continuum does not fully alleviate this problem).
- For continuum experiments performed in spectral line mode, dynamic range of final images is limited by quality of bandpass calibration.
Bandpass Calibration: Some Guidelines

- Bandpass calibration is typically performed using observations of a strong continuum source.

Within the frequency range of interest, bandpass calibration source(s) should have:
(1) high S/N in each spectral channel
(2) an intrinsically flat spectrum
(3) no spectral features
(4) no changes in structure across the band

Rule of thumb:
BP calibrator should have sufficient S/N per channel so as not to degrade the target spectrum by more than ~10%; i.e.,

\[(S/N)_{\text{BP}} > 2 \times (S/N)_{\text{target}}\]
Bandpass Calibration: Some Guidelines

Signal-to-noise per channel too low.

Cross-power spectra of three potential bandpass calibrators.

Spectral features (e.g. spec lines, RFI etc)

Good S/N; no spectral features
RFI?

This is RFI!

Calibrator

Target

If a BPacala source has a spike when you apply BP table to cal source, BP table makes a dip. If it's there, a BP cal table makes a spike.

If BP cal source has a spike.
Computing the Bandpass Calibration

In theory, the frequency spectrum of the visibilities of a flat-spectrum calibration source should yield a direct estimate of the bandpass for each baseline: \(B_{ij}(t,\nu) = \frac{B_{ij}(t,\nu)_{\text{obs}}}{S_{\text{cal}}} \)

BUT: this requires very high S/N.

Most corruption of the bandpass occurs before correlation, and is linked to individual antennas.

\[\Rightarrow \text{solve for antenna-based gains: } B_{ij}(t,\nu) \approx B_{i}(t,\nu) B_{j}(t,\nu) \]
\[= b_{i}(t,\nu) b_{j}(t,\nu) \exp[i(\phi_{i}(t,\nu)\phi_{j}(t,\nu))] \]

• Given \(N \) antennas, now only \(N \) complex gains to solve for compared with \(N(N-1)/2 \) for a baseline-based solution.
 \[\Rightarrow \text{less computationally intensive} \]
 \[\Rightarrow \text{improvement in S/N of } \sim \sqrt{(N-1)/2} \]

• Calibration can be obtained for all antennas, even if some baselines are missing.
Computing the Bandpass Calibration

The method commonly used for solving for the bandpass calibration is analogous to channel-by-channel *self-calibration*:

- Calibrator data are either divided by a source model or Channel 0 (this effectively removes any source structure and any uncalibrated continuum gain changes).

- Antenna-based gains are solved for as free parameters.

Note: This approach may require modification if S/N per channel is low, no strong calibrators are available, etc.
Bandpass Calibration: Modified Approaches May Be Required in Some Circumstances

Signal-to-noise too low to fit channel-by-channel? ⇒ try polynomial fit across the band (e.g., AIPS task CPASS).

For VLBI, compact continuum sources strong enough to detect with high S/N on all baselines are rare. ⇒ use autocorrelation spectra to calibrate the amplitude part of the bandpass.

At mm wavelengths, strong continuum sources are rare. ⇒ use artificial noise source to calibrate the bandpass.

Line emission present toward all suitable BP calibrators? ⇒ use a modest frequency offset during the BP calibrator observations.

Ripple across the band? ⇒ smooth the solution in frequency (but note: you then should also smooth the target data, as smoothing will affect the shape of real ripples, and the slope of the bandpass edges)
Ringing

• Bright-sharp spectral features in your spectra can cause ringing and ghost emission/absorption features.

 - Solution - Smooth data
 • Can be done in the online systems at some array (eg current VLA) or offline in AIPS
 • Beware that you will lose velocity resolution
Example of ringing

M82 OH – 1665 & 1667 lines - masers & absorption
VLA A-array data (Argo et al '07)

Note ringing about the brightest 1667MHz maser
Spatially:
Smoothing data spatially (through convolution in the image plane or tapering in the u-v domain) can help to emphasize faint, extended emission.

Caveats:

This only works for extended emission.

This cannot recover emission on spatial scales larger than the largest angular scale to which the interferometer is sensitive.

Smoothing effectively downweights the longer baselines, leaving fewer data points in the resulting image; this tempers gains in S/N.
Smoothing Spectral Line Data

In frequency:
Smoothing in frequency can improve S/N in a line if the smoothing kernel matches the line width ("matched filter").

Caveats:
In general, channel width, spectral resolution, and noise equivalent bandwidth are all different: $\Delta v_c \neq \Delta v_R \neq \Delta v_N$

\Rightarrow Smoothing in frequency does not propagate noise in a simple way.

Example: data are Hanning smoothed to diminish Gibbs ringing
- Spectral resolution will be reduced from $1.2\Delta v$ to $2.0\Delta v$
- Noise equivalent bandwidth is now $2.67\Delta v$
- Adjacent channels become correlated: $\sim 16\%$ between channels i and i+1;
 $\sim 4\%$ between channels i and i+2.

\Rightarrow further smoothing or averaging in frequency does not lower noise
 by $\sqrt{n_{\text{chan}}}$
Continuum subtraction & cleaning

- Spectral-line data often contain continuum sources (no change with frequency) as well as line data.
 - Note this continuum also contains valuable science!

- If your spectral-line data set has continuum emission in addition to line emission this should be subtracted before deconvolution and cleaned separately.
 - Clean line data & Continuum data separately. Recombine latter if needed.

Less cleaning needed and most channels are just noise
- less cleaning = reduced computing
- Less cleaning = reduced errors
Continuum Subtraction

Continuum emission and its sidelobes complicate the detection and analysis of the spectral line features:

- weak line signals may be difficult to disentangle from a complex continuum background; complicates measurements of the line signal

- multiplicative errors scale with the peak continuum emission
 \[\Rightarrow \text{limits the achievable spectral dynamic range}\]

- deconvolution is a non-linear process; results often improved if one does not have to deconvolve continuum and line emission simultaneously

- if continuum sources are far from the phase center, will need to image large field of view/multiple fields to properly deconvolve their sidelobes
Structure of cube

Continuum sources

Target Continuum + Line emission

No line emission

(Roelfsema '85)
Continuum subtraction methods (see also demo)

1. In the uv-plane

Subtract continuum \rightarrow clean line & cont separately \rightarrow recombine if needed

- Use AIPS task such as uvlin, uvlsf, uvsub

2. In the map-plane

FT data \rightarrow subtract continuum from 'dirty' cube \rightarrow clean both cont. & line (with appropriate beam) \rightarrow recombine if needed

- AIPS task - imlin, (sqash & comb)
Spectrum should have same shape, different scale after continuum subtraction.
Analysis of line data

• Numerous visualisation/analysis methods
 - Spectra to contour maps to pv-plots to movies etc.

One example:
 - Moment maps
“Moment” Analysis

- Integrals over velocity
- 0th moment = total flux
- 1st moment = intensity weighted (IW) velocity
- 2nd moment = IW velocity dispersion
- 3rd moment = skewness or line asymmetry
- 4th moment = curtosis
Moment 0 = \(\int S_v \, dv \)

Moment 1 = \(\langle V \rangle \)

= \(\frac{\int S_v \, v \, dv}{\int S_v \, dv} \)

Moment 2 = \(\langle V^2 \rangle^{1/2} \)

= \(\sqrt{\frac{\int S_v \, (v - \langle V \rangle)^2 \, dv}{\int S_v \, dv}} \)
Moment Maps

Zeroth Moment
Integrated flux

14th September 2007

First Moment
mean velocity

ERIS Bonn-2007

Second Moment
velocity dispersion
Concluding remarks

- **Spectral line imaging** - gives **YOU THE ASTRONOMER more information & hence more science**
 - 3-D+ (RA, DEC, vel, + gas physics!) rather than just 2-D images

- **Techniques applied here can (should) be applied to continuum too** → better images (dynamic range etc), wider fields..
NOW DEMO!!

- Demonstration (hopefully) including -
 - Imaging
 - Continuum subtraction
 - Deconvolution
 - Smoothing
 - Analysis & presentation

14th September 2007 ERIS Bonn-2007
Extra offline demo...

- **MERLIN H1 absorption in 3C293**
 - Data & Notes available at

 http://www.jb.man.ac.uk/~rbeswick/ERIS/H1_demo.html