

Radboud University Nijmegen

Detecting High Energy Cosmic Rays with LOFAR

Andreas Horneffer for the LOFAR-CR Team

LOFAR CR-KSP: Main Motivation

- Exploring the sub-second transient radio sky:
 - Extensive Air showers as guaranteed signal
 - Radio flashes from the moon (UHECR and other?)
 - Identify and understand other sporadic signals ("RFI", lightning, SETI, astrophysical sub-ms pulses with TKP)
- Develop the techniques to work on raw time series data (transient buffer board & tied-array beam) in near field and far-field.

Cosmic Rays

- High energy particles
- Dominated by hadrons (atomic nuclei)
- Similar in composition to solar system
- Broad range in flux and energy
- Different energy regimes:

PARTICLE

PER SOUARE

METER PER SECOND

- <10⁷ eV Modulated by solar wind
- <5.10¹⁴ eV Direct detection possible
- >5.10¹⁴ eV Indirect detection (air showers, moon)

Sources of Cosmic Rays

Radboud University Nijmegen

Sources of **Cosmic Rays**

Radboud University Nijmegen

Correlation with AGN clustering at E>5.7.10¹⁹ eV

- Particle detector arrays
- These cascades also emit radio waves
 - Air Showers: Geo-synchrotron radiation
 - In solids/rock: Cherenkov radiation
- Coherent emission produces short (≤ 10 ns) radio pulses.

LOFAR-CR Energy Ranges

Energy (eV/particle)

LOPES (LOFAR Prototype Station)

Radboud University Nijmegen

- Prototype of a LOFAR station
- Set up inside an air shower array
- Frequency range of 40–80 MHz
- Triggered by particle detectors
- Detection of air showers with LOFAR technology

Falcke et al. (LOPES collaboration), Nature, 435, 313, 2005

LOFAR for Air Showers

- designed as an astronomical telescope not an air shower detector:
 - "small" stations with lots of antennas in a small area
 - different baselines between stations
- consequences:
 - low effective area for the number of antennas
 - high sensitivity
 - very good calibration
- this makes LOFAR an unique tool to study air showers:
 - Develop the method (triggering, reconstruction)
 - Understand the emission process
 - Air shower physics (new particles?)
 - Change galactic→extragalactic cosmic rays

Radio Signature of Air Showers

ABLIST NOMINE FEE

- random arrival times and directions
 - can ignore (man made) pulses from the horizon
- broad-band, short time pulse (~10ns)
- Iimited illuminated area on the ground
 - depending on primary energy
- curvature of radio front
 - similar (but not identical) to point source in few km height
- coincident with other air shower signs
 - e.g. particle front

Radboud University Nijmegen

LOFAR

Opening

CS02

LOFAR Triggered Pulse

Radboud University Nijmegen

Ultra-High Energy Particle Detection

- Particle showers inside the moon produce Cherenkov radio emission
- In the Cherenkov cone the emission maximum is in the GHz range
- At long wavelengths the emission is more omni-directional
- This increases the effective detection volume
- LOFAR can detect the radio pulses in a tied-array beam
- And use the TBB data for exact pinpointing afterwards.

Radboud

University

Nijmegen

LOFAR UHE-CR Sensitivity

Radboud University Nijmegen

Summary

- UHE-CRs that hit the Earth or the Moon produce nanosecond radio flashes in:
 - Air showers in the Earths atmosphere
 - Particle cascades in the lunar regolith
- LOPES has proven that LOFAR can measure air showers
- Its high sensitivity and excellent calibration make LOFAR an unique tool for this measurement
- At low frequencies the radio-Cherenkov emission from the moon becomes nearly omni-directional
- This allows LOFAR to detect particles above 10²¹ eV with unprecedented sensitivity