

The LOFAR observatory: status, issues and recent results

Ger de Bruyn⁺

LOFAR Calibration Project Scientist

* with lots of input/results from the LOFAR offline-pipeline and commissioning teams

14 Sep 2010

AG2010-Bonn-LOFAR+SKA splinter session

1

Outline

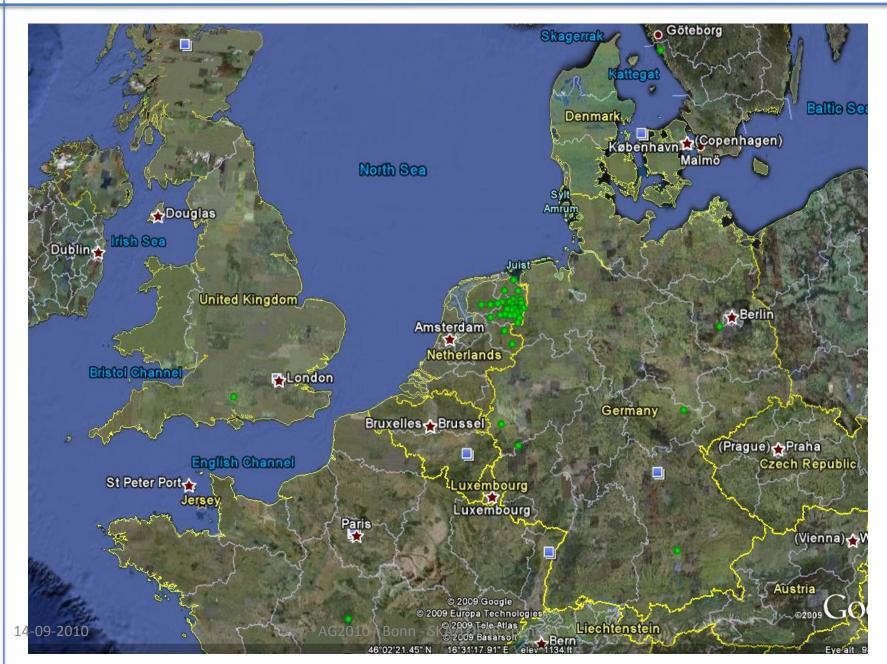
- The LOFAR array : overview, specs, status & images
- RFI mitigation and statistics
- Station types and (-beam) calibration
- Wide field of view and their calibration issues
- Some recent imaging results
- European LOFAR calibration ideas
- The LOFAR calibration survey: MSSS
- Conclusions

LBA (10) 30 - 90 MHz isolated dipoles

Core	2 km	18+ stations
NL	80 km	18+ stations
Europe	>1000 km	8+ stations

A station will have 24 - 48 - 96 antennas / tiles

Principle of **Aperture Synthesis** Array resolution: sub-arcsec to degrees


Pulsars: tied-array(s), (in)coherent sums

Sensitivity (after 4 h, 4 MHz, ~ 50 stations) @ 60 MHz ~ 3 mJy @ 150 MHz ~ 0.1 mJy

HBA 115 - 240 MHz tiles (4x4 dipoles)

LOFAR in Europe (8+ stations)

LOFAR station locations in the Netherlands

AG2010-Bonn-LOFAR+SKA splinter session

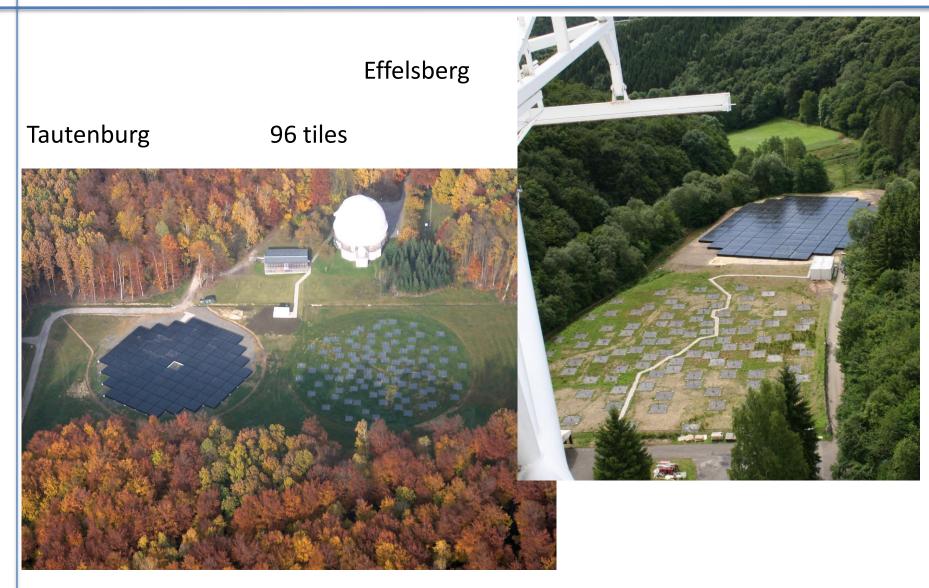
www.astron.nl/~heald

LOFAR core in South-East Drenthe

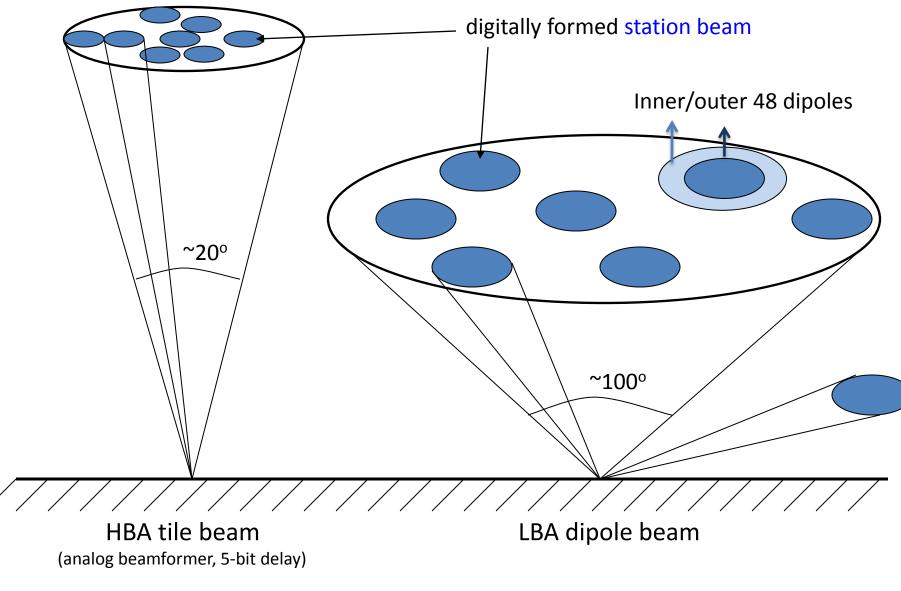
The LOFAR core area near Exloo

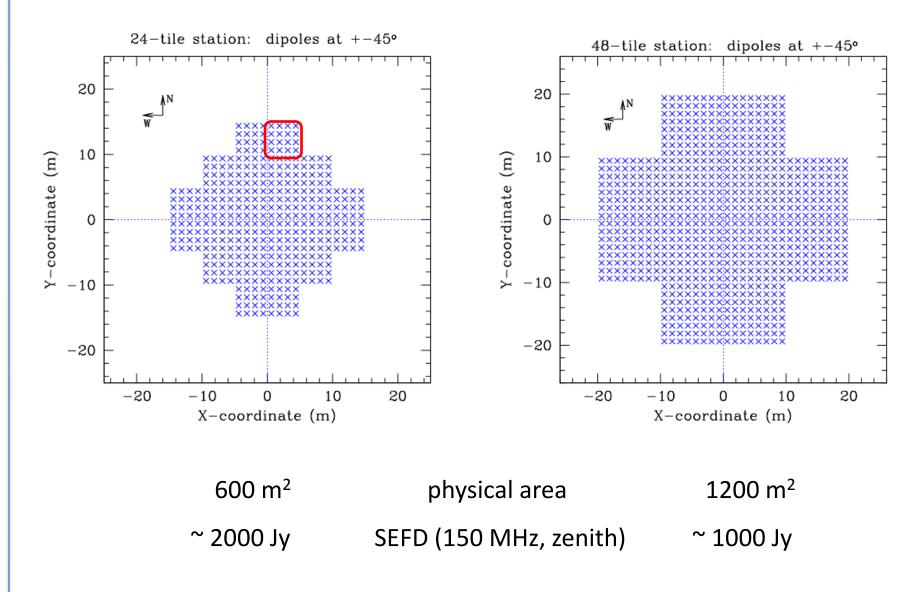
AG2010-Bonn-LOFAR+SKA splinter session

Core Stations (2x24 HBA-tiles, 96 LBA-dipoles)

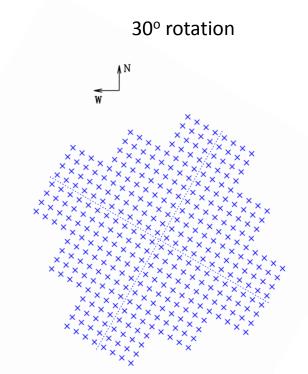


The SUPERTERP in the core


(6 stations)


International stations in Germany

LOFARs very wide Field-of-View (good & bad !)


Two station sizes in NL: 24-tile (CS) and 48-tile (RS)

AG2010-Bonn-LOFAR+SKA splinter session

Combatting grating lobes

At frequencies > 120 MHz the tiles produce grating lobes on the other side of the sky for lowish elevations. To combat these we rotate the stations, and back-rotate the antennas within the tiles \Rightarrow all dipoles remain parallel (X)

	٨	N																					
	T							×	×	×	×	×	×	×	×								
<								×	×	×	×	×	×	×	×								
W								×	×	×	×	×	×	×	×								
								×	×	×	×	×	×	×	×								
				×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				
				×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				
				×	×	×	×	×	×	×	×	×	х	×	×	×	X	X	×				
				×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×				
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	X	×	.×	×	×	×	X	×	×	×	<u>×</u>	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×											£7.7											
×	×	×	×									10.0								×	×	×	×
												×											
				×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				
												×											
				×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				
												×											
												×											
												×											
								×	×	×	×	×	×	×	×								

LOFAR: station rollout status (preview LSM 15-Sep-10)

Station/Item	Cabinet	LBA	HBA	Fibre	CEP connection	Validated
CS302						
RS307						
RS503						
RS106						
RS208						
CS030						
CS401						
CS021						
CS032			<u> </u>	<u> </u>		
RS306						
CS301			<u> </u>	<u> </u>		
CS501			<u> </u>	<u> </u>		
RS509		<u> </u>	<u> </u>			
CS103						
CS001		-				
CS002						
		-				
CS003		<u> </u>		<u> </u>		
CS004				<u> </u>		
CS005	_		<u> </u>			
CS006						
CS007						
CS024	_					
CS201						
CS101						
CS026						
RS205						
CS017						
CS011						
CS013						
CS028						
CS031						
RS104						
RS210			<u> </u>	<u> </u>		
RS310		-	<u> </u>			
RS404		-	 	<u> </u>		<u> </u>
RS406						
RS407						
RS407			<u> </u>	+		
RS410		+	+	+		
RS508				_		
Effelsberg						
Tautenburg				-		
Garching						
Potsdam						
Juelich						
Nancay						
Onsala						
Chilbolton						
Totals	39	37	37	32	30	27

Projected to be operational in (late) Autumn 2010

- 24 (x2) CS Core Stations
- 9 RS Remote Stations
- 3 IS International Stations
- \rightarrow 60 HBA stations
- \rightarrow 36 LBA stations
- \rightarrow Largest array in the world !

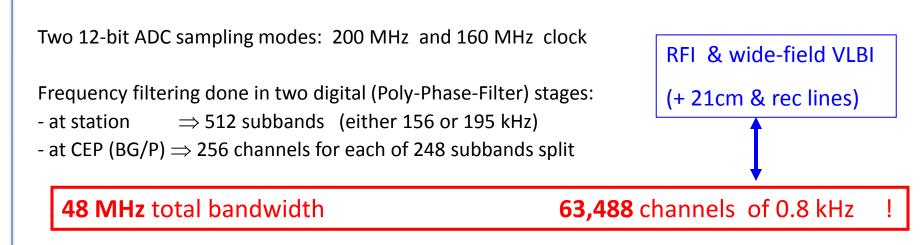
LOFAR calibration framework

New aspects compared to 'standard' selfcal on existing dish-arrays:

- Major direction dependent corrections

- Phase => 'non-isoplanaticity' of the ionosphere (low freq, wide FOV)
- Gain => elevation/azimuth dependent beamshape \rightarrow work with intrinsic sky models !

- All-sky calibration, very wideband synthesis and imaging


- Global Sky Model needed (spectral index, structural parameters, polarization)
- w-term always very important (w-projection, speed issue)
- Full-polarization Measurement Equation (Hamaker, Bregman & Sault, 1996)

(Jones matrix description: B, G, E, I, F : 2x2 matrices, both complex and scalar)

e.g. Bandpass, electronic Gain, beam (E-Jones), Ionospheric refraction, Faraday rotation

Developed largely in- house: Bregman, Hamaker, Noordam, Brouw, de Bruyn, Wijnholds, Yatawatta, Brentjens, Nijboer, ... + Leiden ionospheric group (Rottgering, Intema, van der Tol)

LOFAR has superb frequency resolution

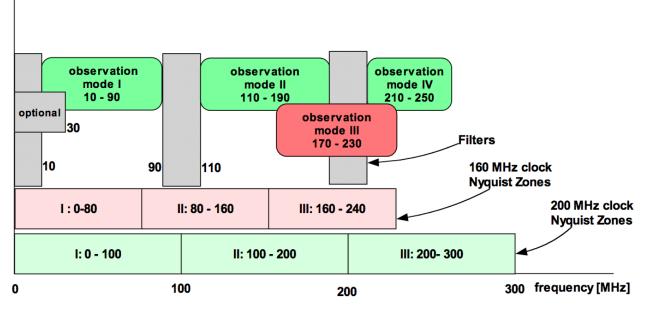
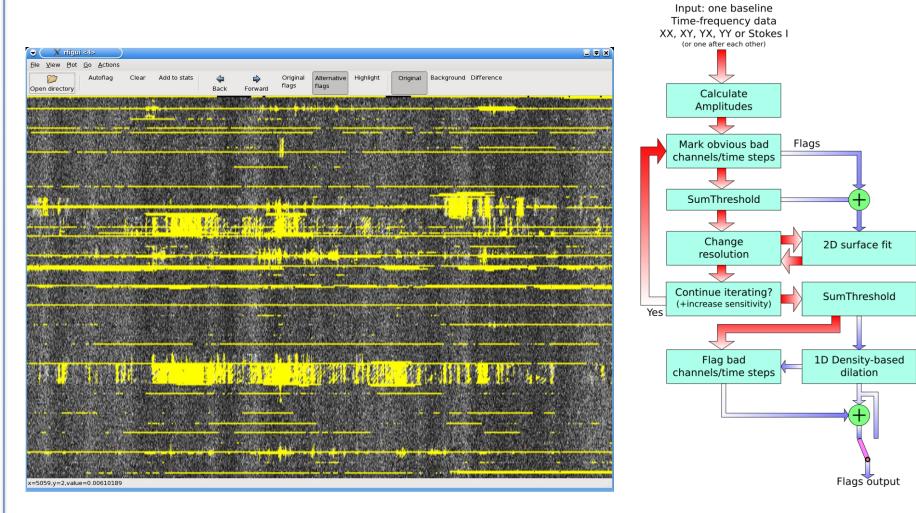



Figure 10 Selection of Nyquist zones is used to select the observed band in the station.

WSRT data around 145 MHz

AO-flagger performance on LOFAR data

LOFAR RFI pipeline

155.953

155.977

155.996

156.016

156.035

156.05

156.074

156.094

156.113 156.133

> 156.15 8:40:01 510

> > 0.007

0.0065

0.008

0.0058

0.005

0.004 0.004

0.003

0.003

0.0025

1000 2000 3000 4000 5000

Time

(c) Amplitude plot before flagging

9:52:00.569

A.R. Offringa 155.957 155.977 155.996 156.016 156.03 156.05 156.074 156.094 156.113 156.133 156.157 11:03:59.629 12:15:58.688 13:27:57.747 14:39:56.807 8:40:01.510 9-52-00 569 11:03:59.629 12:15:58.688 13:27:57.747 14:39:56.807 (a) Time-frequency plot before flagging (b) Time-frequency plot after flagging 0.007 XX XY YX YX 0.0065 0.006 0.0055

tillors!

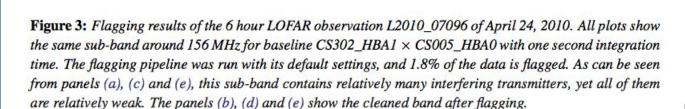
155.98

156

158.04

Frequency (MHz)

(e) Power spectrum


156.08

156.12

0.78 kHz

6h in daytime 24 Apr 2010

0.005

0.0045

0.004

0.0035

0.003

0.0025

1000

2000 3000 4000

(d) Amplitude plot after flagging

Time

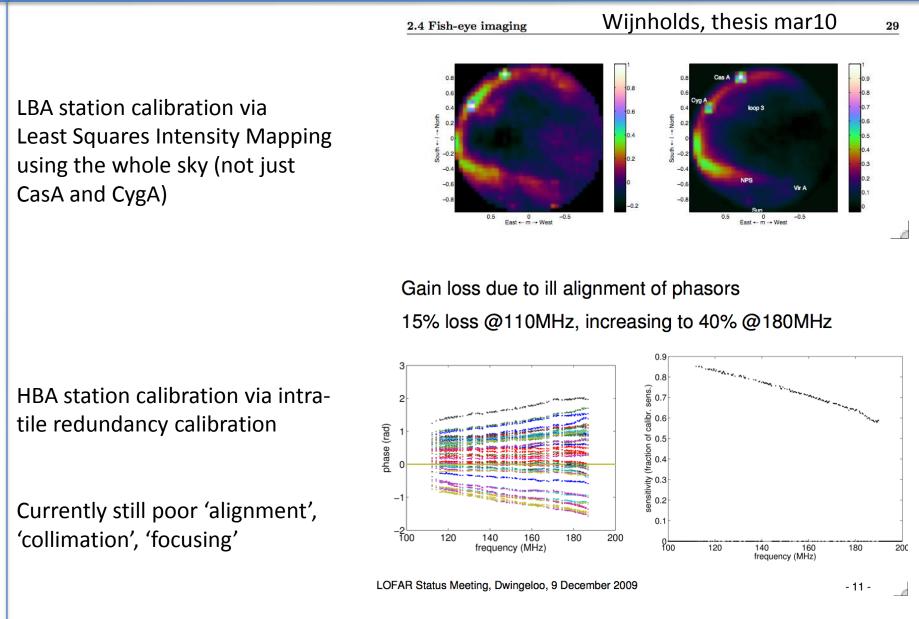
5000

Some recent LOFAR hw/sw developments

Station calibration algorithms/procedures ready for implementation

Rapid increase in # stations from 10 + 5 + 1 to 15 + 7 + 3 (target 22 + 18 + 8)

All 6 stations on the superterp share the same clock (\rightarrow coherent addition)

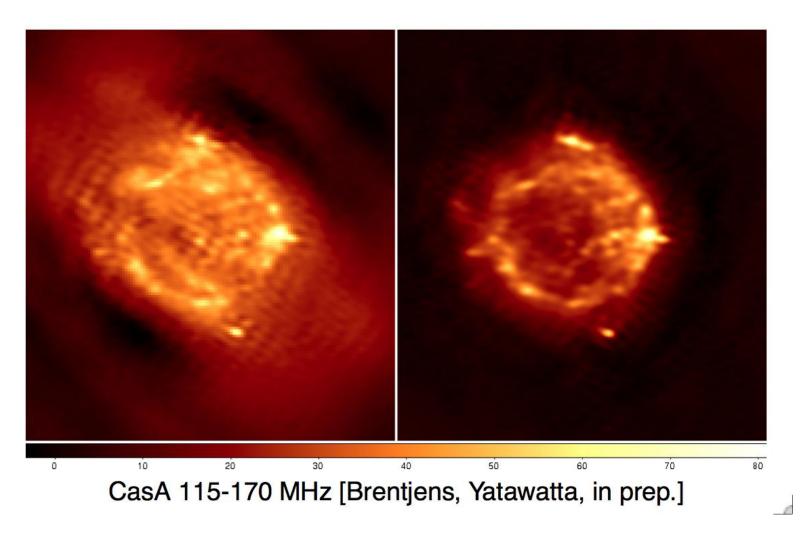

Multi beam (5 !) observations on 3C196

Offline cluster: 8 subclusters each with 9 nodes x8 cores

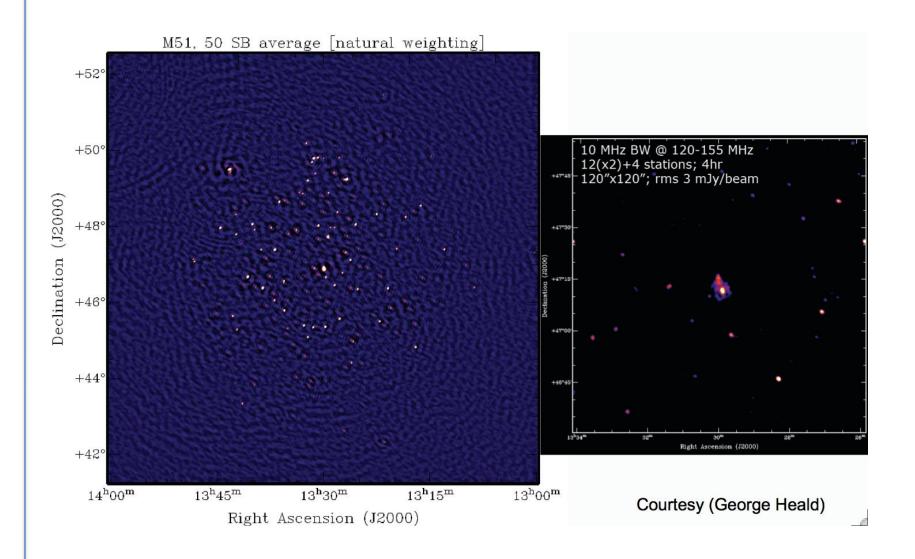
Parallellized pipeline processing

After switch from 16-bit to 4-bit transport: Future 48MHz-beams \rightarrow 192MHz-beams throughput Limited by ~ 50 Gbit/s output/storage

Station calibration procedures:

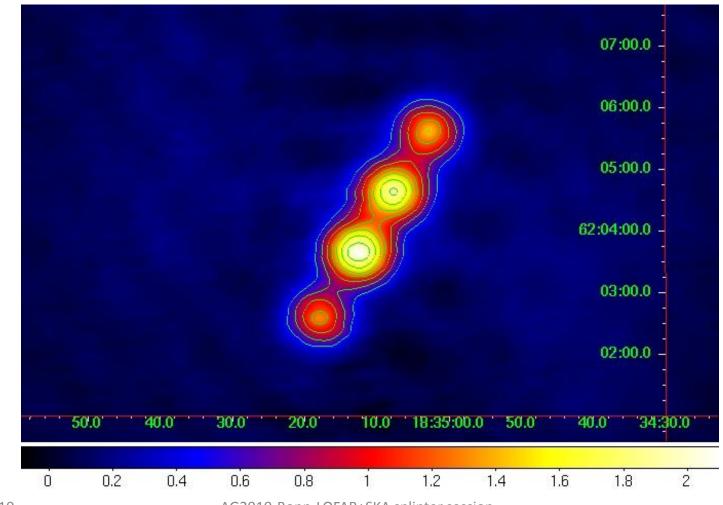


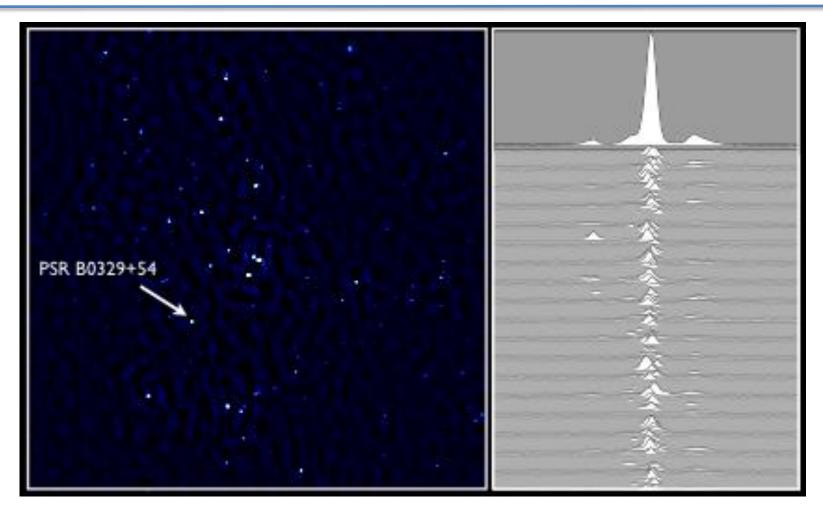
AG2010-Bonn-LOFAR+SKA splinter session


Some imaging results

Partial array late 2009

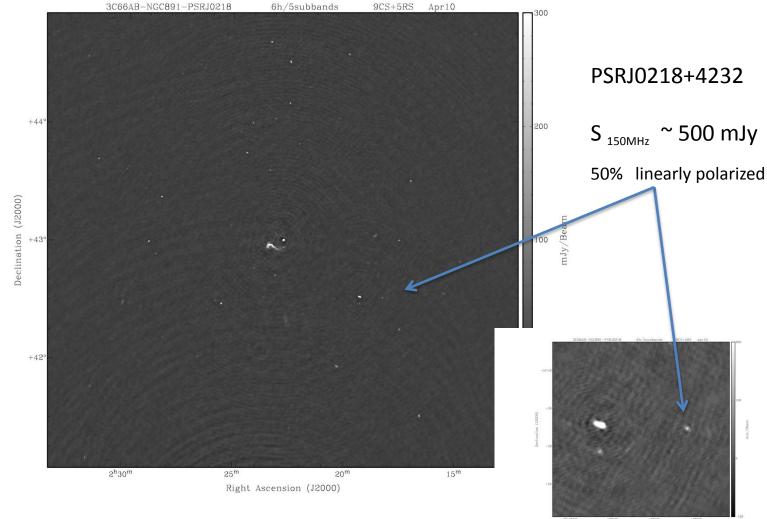
Array of Summer 2010


Automated pipeline results

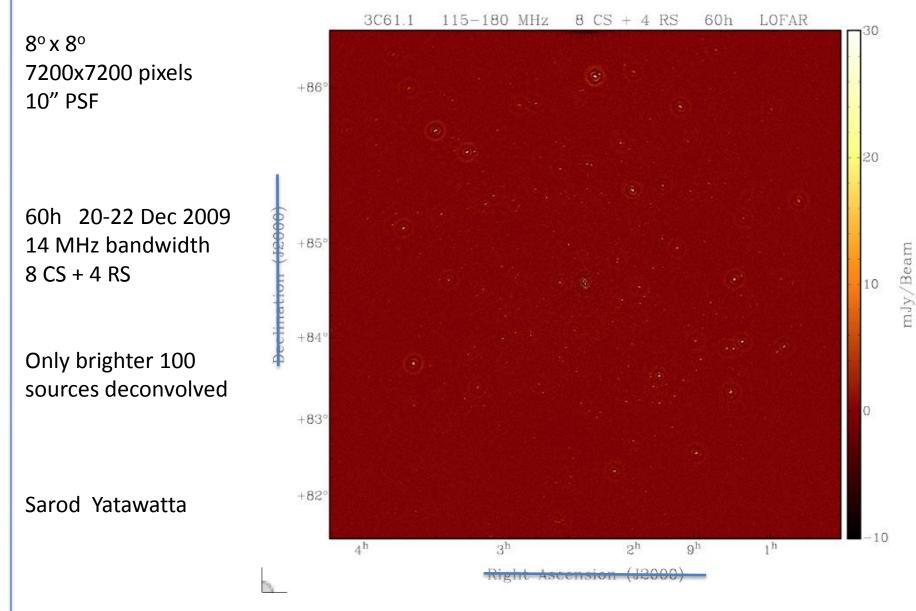

More imaging results

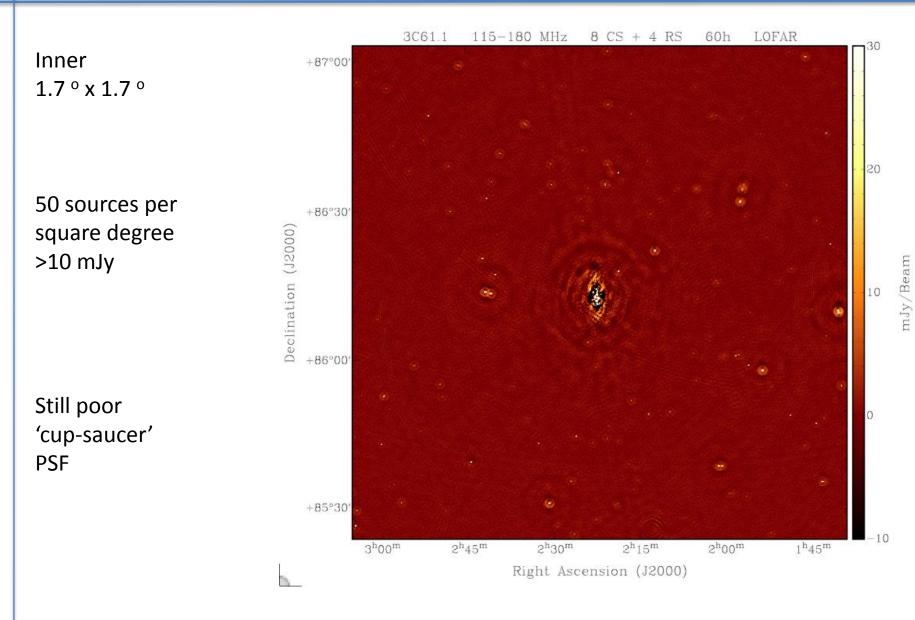
Polarized Double-Double Radio Galaxy B1834+620 ~ 150 MHz, ~ 10 km array

Poster Jana Köhler et al.


Simultaneous pulsar timing + imaging: PSR0329+54

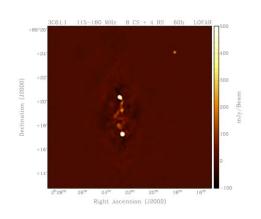
Jason Hessels et al

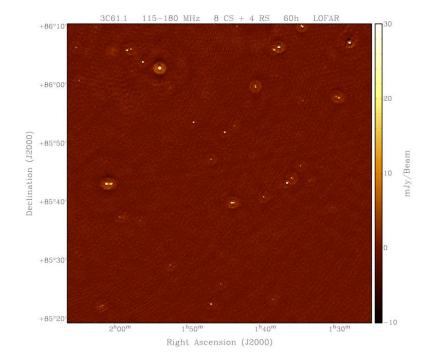

3C66AB-NGC891-PSRJ0218


6h HBA 24Apr10

19^{re}00" 18^{re}30" Right Ascension (J2000)

3C61.1 close to North Celestial Pole (elev=53°)

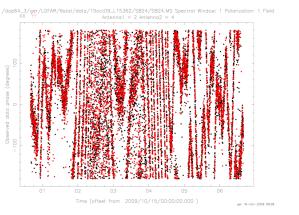


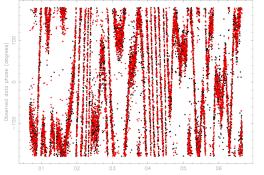

Noise level ~0.6 mJy (only factor ~ 3 away from thermal noise)

3C 61 peak 10 Jy → DR ~ 15000:1

Remaining artefacts in this deepest LOFAR image (with only ~ 12 stations) are due to:

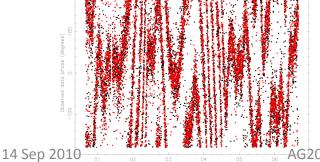
- 1) Sidelobes very distant sources
- 2) Very poor station beampatterns
- 3) 3 sizes for interferometer beampatterns
- 4) Deconvolution issues on 3C61.1, causing rippes across field




Ionospheric TEC modeling

- 1) Both refraction and Faraday rotation depend on absolute TEC which changes relatively slowly with time and direction
- Selfcalibration/imaging depend on relative TEC which varies rapidly (1-10s) --> selfcal/peeling takes (partly) care of this
- 3) Ways to measure absolute TEC:
- Monitor differential refraction across wide angles
- Observe Faraday rotation (FAN-region, pulsars)
- Use GPS data
- Use snapshot all-sky observation sequences (e.g. 10s every 120s) and combining absolute+relative delays

Observing a (polarized?) pulsar in the LBA band



/dap64_3/ger/L0FAR/6stat/data/15oct09_L15362/SB144/SB144.MS Spectral Window: 1 Polarization: 1 Fir XX Antenna1 = 2 Antenna2 = 4

35 MHz

45 MHz

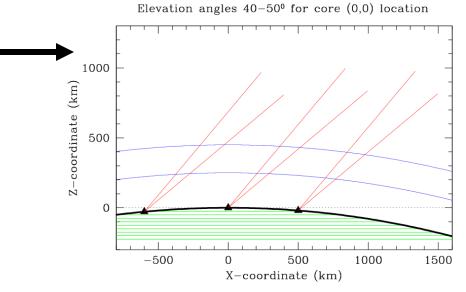
SNR ~ 3 (in 180 kHz, 3s)

Assuming station SEFD is about 25,000 - 50,000 Jy

The estimated flux of the pulsar must then be about 150 - 350 Jy (to within a factor ~2)

Fluxes still uncertain because of unknown station gain and skynoise

56 MHz


ger 17-Oct-2009 14:22

AG2010-Bonn-LOFAR+SKA splinter session

European baselines: non-overlapping screens !

Basic problems of wide-FOV European LOFAR:

- 1) isoplanatic patch small (~ 3-15')
- 2) ~10x fewer calibrator sources
- 3) non-overlapping screens
- 4) large datavolumes (0.2s, 1 kHz?)

A possible solution (for HBA)

- 1) solve for NL screen in NL-LOFAR
- correlate ~ 10-20 superterp tiedarray beams
 with each Eu-station (sensitivity ~ 10x better)
- 3) dynamically track the screen motion using > 20 probes
- NB: 30s x 600 km/h ~ 5 km ~ 1° at 300 km height

'default' mode for EoR KSP on much smaller scales ('rapid' allsky calibration mode)

European calibration issues (HBA 150 MHz)

			3.7°
#antennas	noise (Jy)	FOV	\longleftrightarrow
	(10s,15 MHz, 2pol)	(HPBW,deg)	
Eu96 - NL48	0.07	2.3x3.7	
(65m - 40m)			
Eu96 - ST288	3 0.03	2.3x0.5	
(65m - 300m	n)		

Required on line:

- known positions to attempt correlation, or coherent addition of complex
 0.2s visibilities, using ST6 ionospheric screen)

- global TEC model to predict refraction

Summary of current commissioning issues

Final verification of single-clock superterp (benefits VLBI work)

Validating station calibration ('beamserver')

Parametrization of station beams

Streamline multiple/simultaneous direction-dependent BBS solution

Apply direction-dependent errors (beams/ionsopheric screen)

Further integration of all pipeline components

Compare ionospheric TEC solutions with Faraday rotation data on selected pulsars

Prepare for the northern sky calibrator survey: MSSS (next slide)

The LOFAR Million Source Sky Survey (MSSS)

LOFAR needs a *Global Sky Model (GSM*) for the northern sky which

- has a proper flux scale
- has validated (initial) source parameters (spectrum, structure, ..)
- is astrometrically correct to better than 0.5"
- interfaces efficiently to calibration & imaging pipeline (through the LSM)

This survey will take about 3 months at 50% efficiency at should deliver about 1 million sources.

Carrying out MS³ will also

- create a *joint focus for activities*
- integrates scheduling, monitoring, processing, calibration & imaging
- test all KSP-pipelines
- provides a field-test for storage and processing resource needs
- will be a dress-rehearsal of full LOFAR operations

Conclusions

- Imaging wide fields with 30 km baselines down to 30 MHz achieved
- Sub-mJy noise levels reached in HBA band (115-185 MHz)
- DR ~15000 achieved in 3C61.1 field (dec =+86°) and 3C196 (dec=+48°)
- Very wide field images (>5 degrees) (still benign ionosphere)
- European LOFAR scale imaging succesfully conducted
- Scheduling(SAS), monitoring (MAC), multi-beaming and multi-application integrated

Current LOFAR dynamic range still limited (factor 10 from noise) because of:

- Uncalibrated (=unfocused) stations beams 1)
- 2) Still not very good snapshot uv-coverage (rapidly getting better)
- 6 different effective HBA-beams (24-24, 48-48, 24-48, 96-96, 24-96, 48-96) 3)
- No application of direction-dependent effects (DDEs) as yet 4)

MSSS calibartion survey expected to start in the Autumn 2010

Lots to do, Stay tuned ,

watch the AJDI (Astron Jive Daily Image)

14 Sep 2010

AG2010-Bonn-LOFAR+SKA splinter session