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Abriß Abstract

Die Erforschung der klumpigen und filamentartigen
Struktur interstellarer Molekülwolken ist eines der zen-
tralen Probleme der modernen Astrophysik. Wir wis-
sen bislang wenig über die physikalischen Prozesse,
welche die Strukturierung bewirken, aber es wird ver-
mutet, daß Turbulenz eine wesentliche Rolle spielt. In
dieser Dissertation untersuche ich den Beitrag turbu-
lenter Strömungen zur Struktur interstellarer Dunkel-
wolken. Dazu sind dreidimensionale numerische
Hydrodynamiksimulationen notwendig, da die analy-
tische Berechnung der detaillierten turbulenten Raum-
und Geschwindigkeitsstruktur nicht möglich ist. Mit
der

”
Lattice Boltzmann Methode“ verwende ich ein

neuartiges numerisches Verfahren, bei welchem die
Boltzmanngleichung in einem diskretisierten Phasen-
raum gelöst wird. Mesoskopische Teilchenpakete be-
wegen sich mit festen Geschwindigkeiten auf einem
kartesischen Gitter und tauschen bei jedem Zeit-
schritt nach vorgegebenen Regeln Masse aus. Die
Methode ist wegen der hauptsächlich lokalen Rechen-
operationen hervorragend für die Anwendung auf
Parallelrechnern oder Rechnerverbunden geeignet.

Exploring the clumpy and filamentary structure of
interstellar molecular clouds is one of the key prob-
lems of modern astrophysics. So far, we have little
knowledge of the physical processes that cause the
structure, but turbulence is suspected to be essential.
In this thesis I study turbulent flows and how they con-
tribute to the structure of interstellar dark clouds. To
this end, three-dimensional numerical hydrodynamic
simulations are needed since the detailed turbulent
spatial and velocity structure cannot be analytically
calculated. I employ the “Lattice Boltzmann Method”,
a recently developed numerical method which solves
the Boltzmann equation in a discretized phase space.
Mesoscopic particle packets move with fixed velocities
on a Cartesian lattice and at each time step they ex-
change mass according to given rules. Because of its
mainly local operations the method is well suited for
application on parallel or clustered computers.

Als Teil meiner Dissertation habe ich ein parallelisier-
tes

”
Lattice Boltzmann“ Hydrodynamikprogramm ent-

wickelt. Ich habe die numerische Stabilität der ur-
sprünglichen Methode für Reynoldszahlen bis 104.5

und Machzahlen bis 0.9 verbessert und das Verfahren
auf zwei mischbare Phasen erweitert. Das Programm
wurde auf den drei derzeit leistungsfähigsten Rech-
nern des Max-Planck-Instituts für Radioastronomie in
Bonn sowie dem hochgradig parallelen Großrechner
CM-5 der Gesellschaft für Mathematik und Daten-
verarbeitung in St. Augustin angewandt. Die Simula-
tionen beinhalten kollimierte Scherströmungen und die
Bewegung von Molekülwolken durch Umgebungsgas.
Die Abhängigkeit der entstehenden Strukturen von der
Reynoldszahl und der Machzahl werden untersucht.
Die wesentlichen Ergebnisse dieser Untersuchung
sind (1), daß Klumpen und Filamente nur im Über-
gangsbereich zwischen laminarer und voll turbulen-
ter Strömung bei Reynoldszahlen zwischen 500 und
5000 auftreten, und (2), daß viskose Unterschallscher-
strömungen die typische Geschwindigkeitsstruktur von
Dunkelwolken hervorrufen können. Die unerwartet
niedrigen Reynoldszahlen sind durch die Erhöhung
der Gasviskosität durch Magnetfelder der Größen-
ordnung 10µG und durch die enge Kopplung von
ionisiertem und neutralem Gas zu erklären. Das Auf-
treten wohldefinierter Strukturen im Übergangsbereich
zwischen hochgeordneten laminaren und chaotisch
turbulenten Strömungen kann im Rahmen des Kon-
zepts des “Edge of Chaos” interpretiert werden. Dieser
Begriff beschreibt die Tendenz komplexer Systeme nur
im Bereich von Phasenübergängen zu existieren. Um
die Simulationen mit Beobachtungen vergleichen zu
können, habe ich mit Hilfe des 100m Radioteleskops in
Effelsberg den Grundübergang von Schwefelmonoxid
in Richtung der kalten Dunkelwolke L1512 kartiert. Die
Daten zeigen eine Klumpenstruktur, die ich als turbu-
lenten Schweif hinter der dichten Zentralwolke inter-
pretiere.

As part of my thesis I have developed a par-
allelized “Lattice Boltzmann” hydrodynamics code. I
have improved the numerical stability for Reynolds
numbers up to 104.5 and Mach numbers up to 0.9
and I have extended the method to include a second
miscible fluid phase. The code has been used on the
three currently most powerful workstations at the “Max-
Planck-Institut für Radioastronomie” in Bonn and on
the massively parallel mainframe CM-5 at the “Gesell-
schaft für Mathematik und Datenverarbeitung” in St.
Augustin. The simulations consist of collimated shear
flows and the motion of molecular clumps through an
ambient medium. The dependence of the emerging
structure on Reynolds and Mach numbers is studied.
The main results are (1) that distinct clumps and fila-
ments appear only at the transition between laminar
and fully turbulent flow at Reynolds numbers between
500 and 5000 and (2) that subsonic viscous shear
flows are capable of producing the dark cloud veloc-
ity structure. The unexpectedly low Reynolds numbers
can be explained by the enlargement of the gas viscos-
ity by magnetic fields of the order 10µG and the strong
coupling between ionized and neutral gas. The occur-
rence of well-defined structure between the highly or-
dered laminar and the chaotic turbulent flow regimes
can be interpreted in the framework of the “Edge of
Chaos”, i.e. the tendency of complex systems to ex-
ist only at the transition between phases. In order to
compare the simulations with observed data I have
used the 100m radio telescope at Effelsberg to map
the ground transition of sulphur monoxide toward the
quiescent cold dark cloud L1512. The data show a
clumpy structure that I interpret as a turbulent tail be-
hind the dense central cloud.



In dieser Arbeit gebe ich an mehreren Stellen Hinweise
auf Dokumente des

”
World-Wide-Web1“ (WWW).

Ohne den schnellen Zugriff auf neueste Forschungs-
ergebnisse auf dem Gebiet der

”
Lattice Boltzmann

Methoden“, die im WWW verbreitet wurden, wäre die
Entwicklung und Anwendung des parallelen Hydro-
dynamikprogramms im Rahmen meiner Dissertation
unmöglich gewesen. Um die Arbeit einem internatio-
nalen Publikum zugänglich zu machen, habe ich mich
entschlossen, sie in englischer Sprache zu verfassen
und nach Abschluß auf dem WWW zur Verfügung zu
stellen3.

I give pointers to “World-Wide-Web2” (WWW) doc-
uments at several places in this thesis. Without the fast
access to latest research papers on “Lattice Boltzmann
Methods” the development and application of the par-
allel hydrodynamic code would not have been possi-
ble during my Ph.D. thesis. In order to make this work
accessible to an international group of researchers, I
have decided to write this dissertation in English and
to put it on the WWW after completion3.

1Das World-Wide-Web ist ein hypermediales Informationssystem, das den interaktiven Zugriff auf weltweit vernetzte Rechner
erlaubt. Dokumente des WWW sind durch

”
Uniform Resource Locator“ (URL) gekennzeichnet.

2The World-Wide-Web is a hypermedia information system that allows the interactive access to globally networked computers.
WWW document addresses are given as “Uniform Resource Locators” (URLs).

3WWW-URL: http://www.mpifr-bonn.mpg.de/iram/dmuders/dmuders.html
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Chapter 1

Introduction

Nature provides us with a fascinating variety of self-organizing systems where often a simple
microscopic rule leads to surprisingly complex, sometimes self-similar macroscopic structures.
A well-known example is the continuous bifurcation of branches which produces the typical look
of plants such as trees, etc. Generally, the development of ordered textures, instead of totally
random chaos, is caused by the competition between nonlinear growth and corresponding
dissipative forces. This leads to the amplification or slaving of only a few basic modes which
then represent the macroscopic pattern that we observe (see e.g. Haken 1983). A classic
example of this kind is the formation of hexagonal prismatic Bénard cells in a fluid layer heated
from below. Here, the growth of higher than the first three convectional modes is inhibited by
the temperature dependence of the fluid viscosity.

The situation in these simple systems is rather clear-cut. In many cases, however, it is
not easy to understand how the observed patterns have evolved. One of the most interesting
astronomical examples is the spatial and velocity structure of interstellar clouds, the birthplaces
of new stars. These clouds consist of a gaseous and a dust phase. The gas contains mainly
molecular hydrogen (H2) at average densities of 102 − 103 cm−3 with a small mass fraction (<
10−3) of numerous tracer gases like carbon monoxide (CO), ammonia (NH3), sulphur monoxide
(SO), etc. Although dynamically seen the molecular hydrogen is the most important cloud
ingredient, we cannot directly observe it. At the low cloud temperatures of 10 − 100 K only
rotational energy states are excited by molecule collisions. But H2 does not have a permanent
dipole moment so that it does not emit radiation. The tracer molecules, on the other hand,
do emit line radiation which can be observed with radiotelescopes. However, deriving the H2

distribution from these measurements is complicated since there may be varying molecule
abundances or excitation conditions.

The clouds’ dust phase is believed to consist of graphite and silicates grains (see e.g. Mathis
et al. 1977) which absorb short wavelength photons like the ultraviolet emission of stars and
reemit millimeter to infrared continuum radiation. Thus, the dust causes the dark patterns on
optical plates which coined the name “dark clouds”. Dust grains play an important role in dark
cloud chemistry. Apart from direct two-atom gas reactions, molecules are synthesized on the
dust grain surfaces. Atoms hit the grains, stick to them and react while the binding energy is
taken by the grain’s lattice. The new molecule may then be thermally evaporated into the gas
phase.

Observations of dark molecular clouds reveal a very complex clumpy and filamentary struc-
ture. Clumps are seen on spatial scales spanning several orders of magnitude from giant
molecular clouds to protostellar environments (see e.g. maps in Figure 1.1). The lineshapes
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2 Introduction

often exhibit multiple peaks and non-gaussian wings. So far, there is no conclusive model for the
origin of interstellar cloud structure. To tackle the problem, first, a number of phenomenological
descriptions have been sought by different authors. Stutzki and Güsten (1990), for example,
proposed to decompose spectral maps into Gaussian clumps and to determine the size and
mass distributions. For the M17 SW cloud core they found the number of clouds (dN) per mass
interval (dM) to be proportional to M−1.7±0.15 .

Similar studies have been carried out by Williams and Blitz (1993) and Williams et al. (1994).
Their “CLUMPFIND” algorithm has been applied to maps of the star forming Rosette molecular
cloud (RMC) and to the quiescent Maddalena molecular cloud (MMC) (Maddalena and Thad-
deus 1985). The respective relations are (dN/dM)RMC � M−1.32 and (dN/dM)MMC � M−1.44. Thus,
within statistical errors, there seems to be no significant difference between regions exhibiting
stars formation activity and those containing quiescent clouds. The reason for this may be that
the quiescent regions, like the MMC, are in an intermediate state where their clumpiness has
just been inherited from past star formation activity. But upon examining the MMC’s far-infrared
emission, which is believed to be re-radiated star light, one finds that it is two orders of magni-
tude lower than the value derived for typical star forming giant molecular clouds (GMCs) (Blitz
1993; Boulanger and Pérault 1988). Thus, the Maddalena cloud really seems to be in a pri-
mordial phase. The similar clumpy structure that we observe in the star forming and quiescent
clouds might therefore be generated by physical processes common to both.

Figure 1.1: Interstellar clouds are among the most interesting astronomical examples of self-
organizing systems. The above example shows maps on three different length scales of a
region in the “Taurus Molecular Cloud 1” (TMC-1) (from: Ungerechts and Thaddeus 1987 and
Falgarone et al. 1991). The contours denote velocity integrated radio emission from carbon
monoxide molecules. Self-similar, hierarchical cloud complexes are visible over two orders of
magnitude in length.

By applying other measures of complexity one can try to find out more about the nature
of the relevant physical processes. Houlahan and Scalo (1992) have found evidence for self-
similar, hierarchical structure in molecular clouds. They classified the spatial order of isophotes,
contours of equal intensity, in the form of “structure trees” and compared them with theoretical
maps. Langer et al. (1993) used Laplacian pyramid transforms, a special form of nonorthogonal
wavelets, to analyze the hierarchical structure.

In fact, the observed structures can be quite easily reproduced by simple hierarchical
models. Figure 1.2 shows an example where I have calculated an artificial column density
map of a 3D hierarchy of clouds. First, 10 large clumps with Gaussian density profile have
been randomly placed into a cube volume. Then, 10 Gaussian clumps with half the initial
size have been placed into each of the first clumps. Again, 10 smaller clumps have been put
into the second generation clumps. Repeating this algorithm for a couple of times a typical
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“astronomical” map can be generated. Similar results have been published by Hetem and
Lépine (1993). It is important to note that the same model can be used for terrestrial clouds.
Just increasing the number of small Gaussian clumplets leads to the typical fuzzy shape of
atmospheric clouds (see Figure 1.3). The similarity between both cases leads to the speculation
that there might be similar physical causes for both the atmospheric and the interstellar cloud
structure. The morphological resemblance was, of course, the reason for coining the name
“Interstellar Clouds”.

More evidence for a physical connection between both cases comes from the measurement
of the fractal or Hausdorff dimension D of isophotes in both cases. D describes the contours’
“wrinkledness”. The fractal dimension is defined by L � A

D
2 where L is the isophote’s length and A

is the area enclosed by the contour. Lovejoy (1982) evaluated radar maps of rain clouds. He finds
Drain clouds=1.35±0.05. Falgarone et al. (1991) did the same thing for IRAS, carbon monoxide
and H I maps of different interstellar clouds. They obtained an average of Di.s.clouds≈1.4. Both D
values are rather close to the fractal dimension Dturb. = 4

3 for the case of homogeneous isotropic
Kolmogorov turbulence (Falgarone and Phillips 1990).

In a recent paper Falgarone et al. (1994) compare the synthetic spectra from a 3D sim-
ulation of decaying compressible isotropic turbulence with carbon monoxide observations of
a quiescent cloud in Ursa Majoris. They find that turbulence at Mach numbers around unity
without strong shocks can reproduce the general spectral features observed toward molecular
clouds. However, their isotropic model cannot account for the observed spatial clumpiness.
Nevertheless, it seems ingenious to include turbulent flows into a model for the interstellar
cloud structure. But it is still an open question as to which processes are mainly involved in
producing the turbulent velocity field. Star forming regions contain numerous possible energy
sources like bipolar outflows, stellar winds, ejecta from planetary nebulae and/or supernovae.
Gravitation and magnetic fields may play an important role in some parts of the clouds. It is
difficult to predict the relative importance of the individual contributions, so a realistic model
should include all processes.

The situation is much clearer for the more quiescent regions of the interstellar medium.
These relatively unperturbed and often isolated cold dark clouds exhibit similar spatial and
velocity structure but lack the diversity of energetic processes which accompany ongoing star
formation. The only remaining source of energy is the motion of these clouds through the
ambient medium. The resulting shear forces might cause the observed structure via instabilities
of Kelvin-Helmholtz type. It seems feasible to first try to model such flows and to explore the
structure of cold clouds. Later, one should proceed toward a global model of the interstellar
medium.

The main focus of this thesis work is to numerically investigate basic turbulent dark cloud
shear flows with respect to their contribution to spatial and velocity structure. The model must
be three-dimensional to account for the observed anisotropic morphologies and to allow the
calculation of artificial spectra for comparison with molecular line data. The numerical method
must be able to simulate flow velocities on the order of the sound speed. To simulate turbulent
flows the possible Reynolds numbers should be well above the classical critical value of roughly
Re = 2000. The algorithm must be flexible enough to easily implement the basic ingredients of
the interstellar medium (hydrogen, tracer molecules, dust grains) and allow future extensions
like multicomponent models with chemical reactions, inclusion of magnetic fields, etc. It should
be applicable on massively parallel computers since this is currently the only way to get sufficient
computational performance and ample spatial resolution in three dimensions.



4 Introduction

Figure 1.2: Using a simple hierarchical distribution of clumps with Gaussian density profile
where the smaller clumps lie within the larger ones, it is easy to produce maps that strongly
resemble astronomical data (compare to Figure 1.1). In this example 10 initial clumps of 128
pixel diameter have been randomly placed onto a square of 2562 pixels. Ten clumps with
half the initial size have been placed into each of the initial clouds. Again, 10 smaller clumps
have been put randomly into the second generation clouds and so on. Thus, 5 generations of
subclumps have been produced. Although this phenomenological approach is working fairly
well, the physical processes which produce such a hierarchy of clumps still remain to be
determined.
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Figure 1.3: Using the same hierarchical model as for the interstellar clouds it is straightforward
to also model terrestrial clouds. Only the number of smaller cloudlets has been increased to get
the typical fuzzy shape. The similarity between both cases leads to the assumption that similar
physical processes might control the evolution of atmospheric clouds and their interstellar
counterparts.



6 Introduction

In this dissertation I will introduce the recently developed “Lattice Gas” (LG) and “Lattice
Boltzmann” (LB) methods as new tools to meet all these requirements. In these hydrodynamical
models the microscopic gas structure is represented by particles or particle packets which move
with discrete velocities on a regular lattice. Due to only local collisional particle interactions the
methods are extremely well suited for distributed computing and they can easily include “objects”
of arbitrarily complex shape like interstellar dust clouds. As far as I know this is the first time
that an LG/LB method has been applied to an astrophysical problem.

As part of my thesis I have developed and tested the basic numerical “Lattice Boltzmann”
code and the necessary extensions for simulating interstellar flows. I have parallelized the
program for the cluster of workstations at the Max-Planck-Institut für Radioastronomie (MPIfR4)
in Bonn and for the CM-5 parallel supercomputer at the GMD5 in St. Augustin. With both
parallel codes I have carried out a systematic investigation of different dark cloud shear flows
by considering the dependence of the emanating structures on Mach and Reynolds numbers.

To provide an observational example for the comparison with the simulations, I have mapped
the cold dark cloud L1512 (Lynds 1962) with the MPIfR 100m radiotelescope at Effelsberg.
L1512 is a very quiescent cloud which does not exhibit any sign of massive star formation.
Using continuous scanning (“On-The-Fly”) and frequency switching techniques, I have obtained
a fully sampled map of the ground rotational transition of sulphur monoxide, a molecule which
proved to be a tracer of extended dark cloud structures not seen with other molecular transitions
(Schmid-Burgk and Muders 1994).

4WWW-URL: http://www.mpifr-bonn.mpg.de
5Gesellschaft für Mathematik und Datenverarbeitung mbH / Forschungszentrum Informationstechnik GmbH;
German National Research Centre for Mathematics and Computer Science / German National Research Center
for Information Technology; WWW-URL: http://www.gmd.de



Chapter 2

Lattice Hydrodynamics

In computational fluid dynamics (CFD) one traditionally tries to integrate the macroscopic partial
differential equations of hydrodynamics, i.e. the Navier-Stokes equations (see e.g. Landau and
Lifschitz 1966)

∂ρ
∂t + div(ρ �v ) = 0

∂ �v
∂t + ( �v ∇) �v = − ∇p

ρ + ν∆ �v + ( ζ
ρ + ν

3 )∇div( �v ) .
(2.1)

With the advent of larger and faster computers it has become feasible to leave the continuum
description and to go back to the simpler microscopic model of kinetic gas theory. This theory
had been suggested as early as 1738 by Bernoulli to explain gas pressure and had later been
refined by Maxwell (1860) and Boltzmann (1868).

The new microscopic computational models simulate individual particles which move with
discrete velocities on a regular lattice. Lattice methods are perfectly suited to run on parallel
or distributed computers, a technology which is becoming more and more important since it
provides, at rather low expenses, much better performance than single CPU systems.

It is important to note that lattice methods are closely related to “Cellular Automata” (see
e.g. Wolfram 1986). Those are systems of cells in given states that evolve in time. A cell’s
state changes depending on the conditions in the neighboring cells only. Cellular automata
may produce extremely complex structures from the evolution of rather simple local rules. One
famous example is Conway’s “Life” (Conway 1968) where, on a 2D grid, cells are either “dead”
or “alive”. In one timestep the cell’s fate is dependent on the number of “living” neighboring
cells. If that number exceeds or falls short of given limits, then the central cell dies, otherwise it
survives or a new cell is generated. Upon letting this algorithm work on random initial conditions
for a couple of timesteps, it always selects the same few stable configurations.

Fluid motion is a similar self-organizing process evolving from the microscopic collisions of
atoms or molecules. This microstructure is simulated by the lattice methods so that they may
provide a better numerical tool to tackle longstanding hydrodynamical problems, especially
turbulent flow. I have therefore developed a parallel code based on hydrodynamic lattice theory
to explore dark cloud flows. In this chapter I will briefly describe the historical development of
lattice methods from the “Lattice Gases” to the “Lattice Boltzmann Methods”. I will give the
explicit derivation of the latter models which I have used to simulate viscous, compressible fluid
flows.

7



8 Lattice Hydrodynamics

2.1 Lattice Gas Approximation

The “Lattice Gas Approximation” (LGA) is the earliest new microscopic CFD approach. A
two-dimensional LGA model was first proposed in the early seventies (Hardy and Pomeau
1972; Hardy et al. 1973, 1976). In the LGA individual particles of equal mass move in discrete
time steps on a lattice. Each particle is assigned a fixed velocity along one of the links to
neighboring cells. A time step consists of two actions: free streaming and collision. First, all
particles are moved to neighboring cells along the lattice links according to their microscopic
velocity. Then they collide under conservation of particle number, energy and momentum. The
explicit collision rules determine the viscosity of the system. For computational efficiency all
LGA models assume Fermi-like statistics, i.e. only one particle per discrete velocity is allowed
at each lattice node. For a large number of particles the macroscopic behavior of such an
“atomic level” model is that of an incompressible fluid or a gas in the low Mach number limit.

Due to its microscopic approach the LGA method has a number of computational ad-
vantages. It is ideally suited for the use on parallel or distributed computers because most
operations are local. Complicated flow geometries, including hard objects of arbitrary shape
are easily realized since interactions with obstacles can be represented by simple particle
bouncing. “Lattice Gases” are absolutely stable because no floating point calculations are in-
volved. The discrete velocities are coded by single bits so that on today’s computers rather large
numbers of particles (> 108) may be simulated. The macroscopic floating point quantities like
density, velocity etc. are calculated only at the end of a simulation by averaging the populations
over a sufficiently large number of grid cells.

Apart from the purely hydrodynamic models, the “Lattice Gas” method has also been applied
to a wide field of other problems like thermo-hydrodynamics (Bagnoli et al. 1993), magneto-
hydrodynamics (Chen et al. 1992; Montgomery and Doolen 1987), radiation transport (Nickel
1988), immiscible fluids with surface tension (Adler et al. 1994; Rothman and Keller 1988),
liquid-gas flow (Appert and Zaleski 1993; Chen et al. 1989) and reaction-diffusion systems
(Chopard et al. 1993; Lawniczak and collaborators 1991). A more complete overview of LGA
can be found in a review by Boghosian (1993). Most of the information that was needed to
design the models for this thesis came from the Los Alamos preprint server 6, which stores
recent papers on “Lattice Gas” research with full text and often with included figures. Thus, the
“World-Wide-Web” concept (see footnote 2) proved to be extraordinarily useful to me.

The first hydrodynamical LGA model by Hardy and collaborators (loc. cit.) employed a
Cartesian square lattice. The resulting macroscopic hydrodynamic equations proved to be
anisotropic. Later, Frisch, Hasslacher and Pomeau (FHP, 1986) showed that in two dimensions
a lattice with π

3 symmetry, i.e. a triangular lattice, must be used to ensure isotropy. Each cell
has six nearest neighbors and consequently six possible velocity directions. The geometrical
outline of this model is shown in Figure 2.1. The FHP model became the first really usable
two-dimensional “Lattice Gas” and has since been used and extended by many authors.

Because of the isotropy requirement the construction of three-dimensional models is not
as straightforward as one might expect. In the 3D case a lattice with icosahedral symmetry
is needed (Wolfram 1986). Unfortunately there is no regular 3D lattice with this symmetry.
D’Humières et al. (1986) proposed to use the 3D projection of the four-dimensional face-
centered hypercube (4D FCHC). This lattice consists of the 24 nodes � (±1,±1,0,0),(±1,0,±1,0),
(±1,0,0,±1),(0,±1,±1,0), (0,±1,0,±1),(0,0,±1,±1)  .

6WWW-URL: gopher://xyz.lanl.gov/11/comp-gas
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The 4D FCHC lattice provided the base for a working 3D model. However, now each particle
has 24 neighbors and therefore the number of possible collisions is much higher than in the
2D FHP model (224 compared to 2 6). If all collisions are mapped explicitly in a numerical code,
then 48 MByte of memory are needed. This drastically reduces the space for the data cube
itself even on current computer systems.

A way out of this dilemma is the reduction of the collision table by systematic algorithms.
Hénon proposed to use only collisions that are isometries between the initial and the final states
(Hénon 1987). His method reduces the number of rules from 2 24 to 302209, which is roughly
2% of the original size. On one hand this improves the computational efficiency very much, but
on the other hand the new isometric collision rules set a lower limit on the viscosity so that only
flows with rather low Reynolds numbers can be simulated. Therefore much research has been
devoted to find the optimal collision rules (see e.g. Dubrulle et al. 1990). A good improvement
has been obtained by Somers and Rem (1989) who used smaller lookup tables that are applied
to subsets of the full 24 bit input states.

The FHP lattice

Figure 2.1: The hexagonal structure of the FHP “Lattice Gas” model proposed by Frisch et al.
(1986). Six discrete velocity directions are allowed at each lattice node. The FHP model was
the first working 2D method and has since been used and developed by many authors.

But even with the best collision rules so far, the possible range of Reynolds numbers in
LGA simulations is still too low for simulating turbulent flows. Additionally, LGA simulations
are restricted to only incompressible fluid flow due to the lack of Galilean invariance and the
subsequent need of a linear macroscopic rescaling. Finally, the discretization noise, inherent in
LGA models, requires averaging over a large number of grid cells so that the spatial resolution
is reduced.

A solution to all these problems was found by the development of the “Lattice Boltzmann
Method” (LBM) (see e.g. McNamara and Zanetti 1988; Higuera and Succi 1989; Higuera and
Jiménez 1989) as alternative numerical tool. It is noise-free and can be used for the simulation
of turbulence. The LBM retains most of the computational advantages of the LGA models
except for the absolute numerical stability because it is partly a floating point algorithm.
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2.2 Lattice Boltzmann Method

The LBM simulates the evolution of ensemble averaged distributions fqi instead of the discrete
particles that have been used in the LGA case. The fqi are allowed to take any real value so
that the Fermi-like statistics no longer apply. The indices qi describe the D-dimensional sub-
lattices defined by the permutations of (±1, !�!�! , ±1, 0, !�!�! , 0) where q is the number of non-zero
components and i counts the sub-lattice vectors. The corresponding packet velocities will be
denoted by �cqi . Note that in contrast to the LGA models, “rest particles” with zero velocity are
allowed. They are essential for simulating compressible hydrodynamics via a tunable model
sound speed (Chen et al. 1993). Chen et al. have given a general formalism for D-dimensional
LBMs. I have used important parts of Chen’s work. In the subsequent derivations I will therefore
employ a notation similar to theirs.

Again, for the LBM space, time and particle packet velocities are discretized. The time
evolution of the system is governed by the Boltzmann equation in discrete phase space

fqi( �r + �cqi∆ t, t + ∆ t) − fqi( �r , t) = Ωqi . (2.2)

The term �r + �cqi∆ t describes the propagation of the particle packets along the lattice links. It is
convenient to set ∆ t = 1 to get a scale-free model formalism. Ω is a general collision operator.
The collisions are again completely local so that the LBM is, like the LGA, very efficiently
parallelizable.

The macroscopic variables density (ρ) and velocity ( �v) follow from the respective velocity
moments of the particle distributions

ρ = "
qi

fqi�v = 1
ρ "

qi
fqi �cqi .

(2.3)

These quantities should be conserved in the collisional phase. Therefore the velocity moments
of the collision term Ω must vanish "

qi
Ωqi = 0"

qi
Ωqi �cqi = �0 .

(2.4)

The first LBM models used a form of Ω that was the direct transcription of the LGA method,
i.e. complete particle packets are exchanged between different lattice directions without altering
their mass content (McNamara and Zanetti 1988). By using this approach the particles’ mean
free path and thus the fluid viscosity are still fixed. Releasing that constraint and allowing matter
exchange between the packets leads to variable viscosity (Higuera and Jiménez 1989). In this
case Ω is a general (q ⋅ i) × (q ⋅ i) matrix.

The collision term may be linearized assuming that there is always a local equilibrium
particle distribution f eq

qi dependent on the conserved quantities ρ and �v only. To first order one
gets

Ωqi (fqi) = Ωqi (f
eq
qi ) + Ω ′

qi (fqi − f eq
qi ) (2.5)

where “eq” denotes equilibrium values. To ensure the local conservation of mass and momen-
tum the equilibrium distributions must satisfy"

qi
f eq
qi = "

qi
fqi"

qi
f eq
qi �cqi = "

qi
fqi �cqi .

(2.6)
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Since Ω now only acts on the departures from equilibrium the first term in equation 2.5,
namely Ω(f eq

qi ), vanishes. The simplest and computationally most efficient form of Ω ′
qi is a

relaxation of “Bhatnagar-Gross-Krook” (BGK) type (Bhatnagar et al. 1954). Defining Ω ′
qi ≡

−ω := − 1
τ , ∀ i the discrete Boltzmann-BGK equation reads

fqi ( �r + �cqi , t + 1) = fqi ( �r , t) −
1
τ

#
fqi( �r , t) − f eq

qi (ρ, �v) $ . (2.7)

The BGK relaxation gives maximal local randomization. All particle distributions fqi relax
with the same rate ω on the timescale τ toward their corresponding equilibrium value. The
relaxation rate must obey 0 < ω < 2 for the method to be linearly stable and for the particle
density to be positive (Qian et al. 1992). The condition where 0 < ω < 1 is called subrelaxation
while 1 < ω < 2 means overrelaxation. It has been shown by Behrend et al. (1993) that the BGK
simplification of the collision operator is a good approximation and that the additional freedom
of the full LBM matrix does not improve the method. For higher Reynolds numbers the BGK
method performs even better (Succi et al. 1993). Since the BGK model is also computationally
advantageous it has become the main tool for LBM simulations. Therefore it has also been
used for the simulations presented in this thesis.

It now remains to specify an expression for the equilibrium distributions which is dependent
on the conserved quantities only. There is considerable freedom in the choice of f eq

qi . A general
parametrized form is the Taylor’s series of a lattice Maxwell-Boltzmann distribution

f eq
qi (ρ, �v) = ρ

#
Aq + Bq( �cqi �v) + Cq �v 2 + Dq( �cqi �v )2 + !�!�! $ . (2.8)

The coefficients Aq to Dq are dependent on the employed lattice geometry. For hydrody-
namic models they are constant. In case of thermo-hydrodynamic models they additionally
depend on the thermal energy (see e.g. Chen et al. 1994). In this thesis I have used a purely
hydrodynamic model since my test simulations showed that the numerical stability of all current
3D thermo-hydrodynamic “Lattice Boltzmann Models” (Alexander et al. 1993; McNamara and
Alder 1993; Qian 1993; Chen et al. 1994) is not yet good enough for simulating interstellar
flows. I also did not use the additional constant which had been introduced into the equilibrium
distributions by different authors (see e.g. Chen et al. 1993). This was originally done to avoid
negative fqi values but in fact it decreases the numerical stability especially for low viscosity
and high Mach number.

The equilibrium distributions must be chosen such, that for each given lattice the Navier-
Stokes equations emerge macroscopically. First, some lattice specific relations have to be
noted. The first four tensors of lattice velocity moments are defined as follows

Tqα = % i cqiα = 0
Tqαβ = % i cqiαcqiβ = bqq

D δαβ

Tqαβγ = % i cqiαcqiβ cqiγ = 0
Tqαβγδ = % i cqiαcqiβ cqiγ cqiδ = ψqγαβγδ + ϕq(δαβ δγδ + δαγ δβδ + δαδ δβγ )

(2.9)

where bq = 2q+1D
q!(D−q)! is the number of base vectors in a sub-lattice and δαβ and γαβγδ are the

respective Kronecker symbols in 2 and 4 dimensions. The lattice dependent functions ψq and
ϕq may be calculated according to Qian (1990) by

ψ0 := 0, ϕ0 := 0 and
ψq = (D+2−3q)bq q 2

qD(D−1)

ϕq = (q−1)bq q 2

qD(D−1)

& '( ∀q > 0 . (2.10)
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To get macroscopically isotropic equations it is required that"
q

tqψq = 0 (2.11)

where tq denotes the fraction of ρ on sub-lattice q. With the abbreviation σ = D% q
tqbq q

the

equilibrium coefficients for the rest particles are defined by

A0 = t0
B0 = 0

C0 = − ) 1−σ2(1−t0b0) % q
tqϕq

2σ % q
tq ϕq *

D0 = 0

(2.12)

and for the moving particles by

Aq = tq
Bq = tqσ
Cq = −tq σ

2

Dq = tq 1
2 % q tqϕq

.

(2.13)

To finally derive the continuum description and the transport coefficients from the discrete
Boltzmann equation in the long wavelength and low frequency limits one first expands equation
2.7 into a Taylor’s series. Assuming implicit sums over multiple Cartesian components indexed
by Greek subscripts one gets to second order

∂t fqi + cqiα ∂α fqi +
1
2

∂2
t fqi + cqiα ∂t∂αfqi +

1
2

cqiα cqiβ∂α∂β fqi = −
1
τ

(fqi − f eq
qi ) . (2.14)

Then a multi-scale Chapman-Enskog perturbative expansion is applied to the particle dis-
tributions and the time and space derivatives via

fqi → f 0
qi + εf 1

qi

∂t → ε∂t1 + ε2∂t2

∂α → ε∂α .

(2.15)

f 0
qi ≡ f eq

qi so that the integrals over the perturbation term f 1
qi must vanish"

qi
f 1
qi = 0"

qi

�cqi f 1
qi = �0 .

(2.16)

Equation 2.15 is now used to replace the respective terms in equation 2.14. Retaining terms
on first order of ε gives

∂t1 f 0
qi + cqiα ∂α f 0

qi = − 1
τ

f 1
qi . (2.17)

Integration of this equation and its velocity moment over the discrete velocity space and
using the definitions from equations 2.3 and 2.9 leads to the following macroscopic relations

∂t1ρ + ∂α(ρvα) = 0
∂t1(ρvα) + ∂β(ρvαvβ) = − 1

σ ∂αρ .
(2.18)
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Examining the terms on second order of ε one gets

∂t1f
1
qi + cqiα∂α f 1

qi + ∂t2 f 0
qi +

1
2

∂2
t1 f 0

qi + cqiα∂t1∂αf 0
qi +

1
2

cqiα cqiβ∂α∂β f 0
qi = 0 . (2.19)

Again, integrating this result over the discrete velocity space produces another two macro-
scopic equations

∂t2ρ = 0
∂t2(ρvα) +

#
τ − 1

2 $ 1
σ ∂α + ∂γ (ρvγ ) ,

−
#
τ − 1

2 $ "
q - tqϕq . σ∂β + ∂γ (ρvγ )δαβ + ∂α(ρvβ) + ∂β(ρvα) , = 0 .

(2.20)

Finally, combining the macroscopic results 2.18 and 2.20 and resubstituting the Chapman-
Enskog expansions 2.15 one retrieves the Navier-Stokes of viscous compressible fluid flow. To
complete the “Lattice Boltzmann” derivation the three transport coefficients of equation 2.1 are
calculated. Sound speed and viscosities in model units are given by

cs = / 1
σ

η =
#
τ − 1

2 $ σ "
q

tqϕq

ζ =
#
τ − 1

2 $102 2σ "
q

tqϕq −
1
σ 34 .

(2.21)

We now have the complete formulation of D-dimensional hydrodynamic “Lattice Boltzmann
BGK Methods”. The sound speed is tunable by altering the relative mass contents of different
sub-lattices. The rest particles supply a buffer that ensures the local conservation laws. The
shear viscosity may be varied by choosing appropriate relaxation times τ. Together, different
Mach and Reynolds number ranges may be simulated.

For a numerical code a concrete lattice must be selected and the respective equilibrium
distributions must be determined from above formulae. The choice is not as restricted as in the
LGA case since there is no Fermi-like rule. For the sake of computational efficiency one tries
to find the minimum necessary number of particle distributions. In three dimensions it is the
“D3Q15” lattice geometry (Qian et al. 1992).
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2.2.1 The D3Q15 Lattice

The “D3Q15” lattice consists of 15 nodes on three sub-lattices: (1) at q = 0, the cell
itself (0, 0, 0) where the rest particles reside. (2) at q = 1, the six nearest neighbors
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) where the particles move with unit velocity. And (3) at q = 3, the
eight third-nearest neighbors (±1, ±1, ±1) where the packets move with a velocity of 5 3. This
is the smallest possible number of nodes to fulfill all constraints for a 3D hydrodynamic model.
Figure 2.2 shows a sketch of the “D3Q15” lattice geometry.

q Aq Bq Cq Dq

0 t0 0 − 1
3 0

1 1−t0
7

1
3 − 1

6
1
2

3 1−t0
56

1
24 − 1

48
1
16

Table 2.1: D3Q15 equilibrium coefficients to second order in velocity.

The “D3Q15” equilibrium coefficients are given in table 2.1. The respective transport coef-
ficients read

cs = / 3
7 (1 − t0)

η = 1
3

#
τ − 1

2 $
ζ =

#
τ − 1

2 $ # 2
3 − 3

7(1 − t0) $ .

(2.22)

Thus is the definition of the basic 3D LBM BGK model that I have used in this thesis. The
improvement of numerical stability, the necessary modifications for simulating dark cloud flows
and the parallel code implementation for a cluster of workstations and for the CM-5 parallel
supercomputer will be described in the next chapter.



Lattice Hydrodynamics 15

The D3Q15 Lattice
Y

Z

X

(-1,1,-1)

(-1,1,1)

(1,1,-1)

(1,1,1)

(-1,-1,1)

(-1,0,0) (1,0,0)

(0,1,0)

(0,-1,0)

(0,0,1)

(0,0,-1)

(-1,-1,-1) (1,-1,-1)

(1,-1,1)

Figure 2.2: Sketch of the D3Q15 lattice geometry. The velocity directions of the 14 moving
particle distributions are shown as arrows. In each time step the particle packets move along
the predefined directions and then relax toward the Lattice-Maxwellian equilibrium distribution.
The relaxation rate determines the physical viscosity.
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Chapter 3

The Parallel Code

3.1 Numerical Stability

Since the “Lattice Boltzmann Method” uses a hybrid algorithm, which includes both integer and
floating point operations, it potentially suffers from numerical instabilities. The stability of the
“FHP” and “D3Q15” “Lattice Boltzmann” methods has been analyzed to some extent by Sterling
and Chen (1996); it depends on the mass distribution among the discrete velocity directions,
the mean flow velocity, the relaxation parameter ω and the wavenumber of perturbations.
Mainly, it is necessary that 0 < ω < 2 so that the method is linearly stable. This also ensures
that the viscosity is positive since ηD3Q15 = 1

3 6 1
ω − 1

2 7 . There is an absolute model velocity
maximum above which the method is unstable. This maximum decreases for increasing ω. For
the “D3Q15” lattice at ω = 2 the maximum possible velocity is about 1

3 . It seems advisable that
the model velocities be generally kept below this value.

Flow velocities in dark clouds are expected to be of the order on the sound speed since
the spectral linewidths of the tracer molecules are at most a few times their respective thermal
values. Therefore, to simulate Mach numbers of around unity, the model sound speed cs should
be tuned to a value lower than the maximum stable velocity of approximately 1

3 . To be on the
safe side I have used cs = 0.1 throughout the simulations. Nevertheless, my numerical tests
have shown that the code becomes increasingly more unstable as the flow velocity approaches
the sound speed. The problem seems to be the low order truncation in the Taylor’s series of
the LBM derivation (equations 2.8 and 2.14). Chen et al. (1994) have derived higher order
corrections for thermo-hydrodynamic LBMs. By fixing the thermal energy, these corrections
may also be used for the purely hydrodynamic models. The new terms ensure the isotropy of
all velocity tensors up to 6th order. The equilibrium distributions now are expanded to fourth
order in velocity, i.e.

f eq
qi (ρ, 8v) = ρ 6 Aq + Bq( 8cqi 8v) + Cq 8v 2 + Dq( 8cqi 8v )2 (3.1)

+Eq( 8cqi 8v) 8v 2 + Fq( 8cqi 8v )3 + Gq( 8cqi 8v)2 8v 2 + Hq 8v 4 + 9�9�9 7 .

When calculating the new coefficients there are some free parameters. Their optimum
values have to be determined by numerical tests on stability. Most critically, I find that one
parameter (X3 in Chen’s notation (Chen et al. 1994)) must be set to zero to get a good
model. My optimum coefficients are listed in Table 3.1. With the new equilibrium distributions
the stability improves somewhat with higher Mach numbers. Additionally, the often observed

17
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q Aq Bq Cq Dq Eq Fq Gq Hq

0 t0 0 − 1
3 0 0 0 0 0

1 1−t0
7

1
3 − 1

6
1
2 − 1

2
1
2 0 0

3 1−t0
56

1
24 − 1

48
1

16 − 1
16

1
16 0 0

Table 3.1: D3Q15 equilibrium coefficients to fourth order in velocity.

checkered patterns are reduced. These patterns are believed to be caused by the employed
lattice structure.

Still present, however, are spurious instabilities due to the non-linear growth of large velocity
gradients. In this case the current particle distributions fqi are far away from their equilibrium
values. These non-equilibrium distributions are, at first, localized to only a few cells but eventu-
ally spread through the whole data cube and lead to a global collapse. To prevent this growth
I have developed a damping method which forces the current fqi toward their respective equi-
librium distributions by selectively lowering the relaxation parameter ω. This is equivalent to
locally raising the viscosity. If a cell’s velocity | 8v | exceeds a given limit v0, then the relaxation
parameter for the next collision is changed according to:

ω = ω 0 + (ω − ω 0)
(θcs)2

(| 8v | + (θcs − v0))2
(3.2)

where θ defines the “sharpness” of the decrease. ω 0 is a lower limit which has been included
since the BGK relaxation process produces increasingly more non-hydrodynamic modes if
ω ; 1 (Behrend et al. 1993).

The above damping method drastically improves the stability so that flows at Mach numbers
of up to around 0.9 can now be simulated. Simultaneously the behavior at low viscosities has
improved so that simulations up to a Reynolds number of around 104.5 are possible. Thus, the
model is suited to simulate dark cloud flows. Reasonable values for θ lie between 0.01 to 0.1.
ω0 should be between 0.7 and 1.3 depending on the value of the global relaxation parameter
ω. Yet, despite all improvements a global flow velocity at “Mach One” currently seems to be
the absolute upper limit for the “D3Q15” model and other LBMs. At higher Mach numbers the
velocity gradients which occur are too large and, thus, cannot be accounted for.
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3.2 Miscible Fluid Formalism

Tracer molecules allow us to observe interstellar clouds since the hydrogen itself does not
emit radiation at the low cloud temperatures of 10 − 100 K. However, due to varying excitation
conditions or varying abundances the tracers are not necessarily homogeneously distributed.
Therefore, the numerical model must include two miscible fluid phases, the hydrogen and the
tracer molecules. The second phase has been realized by adding another set of 15 particle
distributions to the original “D3Q15” method. To distinguish both phases I will call them “red”
(f r

qi ) and “blue” (f b
qi ). Individual and total densities and velocities are defined by

ρr = <
qi

f r
qi

ρb = <
qi

f b
qi

ρ = <
qi
6 f r

qi + f b
qi 78v r = 1

ρr <
qi

f r
qi 8cqi8v b = 1

ρb <
qi

f b
qi 8cqi8v = 1

ρ <
qi
6 f r

qi + f b
qi 7 8cqi .

(3.3)

The fluid mixing is done via calculating new distribution functions =f r/b
qi before the particles

collide. Miscibility requires only global momentum conservation. The momentum information for
the individual components is lost. Mass conservation must be ensured for both fluids separately.
The intermediate particle packets are therefore>

f r
qi = ρr

ρ 6 f r
qi + f b

qi 7>
f b
qi = ρb

ρ 6 f r
qi + f b

qi 7 .
(3.4)

The relaxation process is governed by one global Boltzmann equation where the “red” and
“blue” parts follow according to the individual mass contents>

f r
qi( 8r + 8cqi , t + 1) =

>
f r
qi ( 8r , t) − 1

τ 6 >f r
qi ( 8r , t) − f eq

qi (ρr , 8v) 7>
f b
qi( 8r + 8cqi , t + 1) =

>
f b
qi ( 8r , t) − 1

τ ? >f b
qi ( 8r , t) − f eq

qi (ρb, 8v) @ .
(3.5)

To test the two-phase formalism I have simulated the three-dimensional diffusion of an
initial single dot of tracer fluid into a homogeneous background medium. The analytical solution
predicts a Gaussian tracer distribution which evolves in time according to

ρtracer A t− 3
2 e− 1

4 r2D̃−1t−1
(3.6)

where r is the radial distance from the initial dot position and D̃ is the diffusion coefficient. Figure
3.1 shows the numerical results for ω = 1.99 at three different time steps. For t0 a Gaussian
fit to the data has been made. The curves for 2t0 and 4t0 have been calculated from equation
3.6. They show that the data follows the theory reasonably well. Remaining deviations are due
to the lattice discretization and rounding errors.
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Figure 3.1: The two-phase formalism has been tested by simulating the diffusion of an initial
single dot of tracer fluid into a homogeneous background medium at ω=1.99. The analytical
solution to this problem predicts a spatial Gaussian tracer distribution evolving in time. The
crosses mark the measured density profiles at three different time steps. A Gaussian fit has
been made at t0. The curves for 2t0 and 4t0 have been calculated from the analytical formula.
They fit the data reasonably well.

3.3 Initial and Boundary Conditions

Initial conditions are usually specified in terms of densities and velocities. For the “Lattice
Boltzmann Method” these macroscopic values have to be translated into corresponding micro-
scopic particle packets for each fluid phase. A common way, which has been followed in this
study, is to use the respective equilibrium distributions (equation 3.2) for this translation.

First, in my code a background field is established for the whole data cube. Later, during the
simulation, matter may flow into or out of the cube through square or circular inlets or outlets
of arbitrary size and spatial position. These sources and drains may be oriented parallel to any
of the cube surfaces. The surfaces themselves can also be continuously set to initially defined
values of density and velocity to allow the implementation of various boundary conditions. The
nominal values of ρ and 8v at the inlets may be varied randomly to induce flow instabilities. I
have not included any periodic forces since they would imprint a systematic pattern onto the
flow.

Without any special settings the boundary conditions are periodic along all three axes
because the free streaming of particles has been realized via circular shifts of the three-
dimensional arrays. These shift operations are provided in the standard command set of the
parallel programming languages that I have used (see section 3.4). Circular shift up by one, for
example, applied to a 1D vector A containing N elements, means that =A(2) = A(1), =A(3) = A(2),
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9�9�9 , =A(N) = A(N − 1) and =A(1) = A(N).
The previously mentioned marker array is used to store 3D “objects” of arbitrary shape. A

number of special cell conditions have been implemented. A cell may be reflective, i.e. part of
a solid body like a wall. In this case the incoming particle packets are bounced back by 1800.
This ensures that the time averaged velocity at the wall vanishes and that there is a dragging
force between fluid and wall. No relaxation should take place in the reflective cells since ρ and8v are not always properly defined due to possible missing particle packets on the inside of an
object.

Next, a partly permeable cell has been defined. Part of the kinetic energy may be absorbed
by the cell so that the flow is decelerated. This allows for the simulation of scenarios where
tracer molecules are thermally evaporated off the dust grains or where cold dense clumps move
through a background medium while parts of the clumps are torn off by viscous forces. Letting
the “red” fluid phase be the background gas and the “blue” phase represent the tracer molecules
the energy absorption and tracer molecule release can be calculated microscopically via

f r
00,final = ρr − B 1 − 2erel

ρ Cv 2 (ρr − f r
00,initial )

f r
qi,final = B 1 − 2erel

ρ Cv 2 f r
qi,initial ∀q ≠ 0

f b
00,final = ρb − B 1 − 2erel

ρ Cv 2 (ρb − f b
00,initial ) + ρb

rel

f b
qi,final = B 1 − 2erel

ρ Cv 2 f b
qi,initial ∀q ≠ 0

(3.7)

where erel is the absorbed specific energy and ρb
rel is the amount of material released into the

gas phase.
A similar algorithm has been used for special absorber cells. During the first simulation runs it

happened that tracer gas passed the cube boundaries via the periodic conditions and reentered
the cube at the inlet. This caused the superposition of two unrelated patterns. Therefore, I have
employed a one-layer filter at the cube’s end to absorb one of the two fluid phases. In this case
the velocity as well as the density are multiplied by a given factor which was typically around
0.01. It is not possible simply to set ρb = 0 and 8v b = 80 since this causes numerical instabilities.

The introduced cell types may occur at arbitrary positions in the cube since all cell related
calculations are purely local. In my program I have included some basic geometric elements
like square and circular plates, cylinders and arbitrarily oriented general ellipsoids. These can
be used to construct more complex setups. The possibility to implement complex geometries
is one of the major advantages of LBMs over other CFD methods.

3.4 Parallelization

For investigations in the structure of 3D hydrodynamics a minimum cube size of around 1003

cells is necessary. With the two-phase BGK code it would take A 50 hours and around 120 MByte
of main memory to calculate a couple of thousand timesteps on a typical workstation. This is
far too high to make a systematic examination of different setups. Therefore, the distribution
of the work load among several computers is needed. The BGK method is an ideal candidate
for parallel execution since most of the calculations are done locally. Only the free streaming
of particles along the lattice links requires communication between the processors. If the data
layout is chosen appropriately the communication time can be minimized.
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3.4.1 Message Passing Paradigm

The basic idea behind parallelization is to distribute a global problem among a number of sepa-
rate processors. Under the “Multiple Instruction Multiple Data” (MIMD) concept each computing
node calculates independently intermediate local results. Inquiry messages are sent over an
interconnecting network whenever a partial result is needed by another node (“Message Pass-
ing”). The sending node must wait until the appropriate data is available before it can resume its
work. To avoid idle times it should be ensured that the workload is distributed evenly according
to the individual node computing powers.

Quite a number of subroutine libraries have been developed to allow sending and receiving
messages. The “Parallel Virtual Machine” (PVM7, Beguelin et al. (1991)) has become a rather
popular system since it supports heterogeneous clusters of workstations, a computing resource
which is already available at many institutes, but rarely used. Under PVM a special program (a
daemon) is started on each of the nodes. Messages are sent to the daemon, passed on to the
recipient computer’s daemon and eventually to the node program.

Currently there is an attempt of an international group of computer users and vendors to
specify a standardized set of message passing routines based on PVM and other libraries. The
new standard is called “Message Passing Interface” (MPI8) and its main goal is to help writing
portable software.

3.4.2 Data Parallel Paradigm

The “Message Passing” concept allows for the handling of all kinds of problems, especially if
different subproblems with different sets of data are to be solved asynchronously. However,
one would often just like to increase data space and performance of a synchronous algorithm
working on a homogeneous dataset. The respective parallelization concept is called “Single
Instruction Multiple Data” (SIMD) or “Data Parallel” paradigm. The same program is executed
by all processors in parallel but each of them works on its individual piece of data. The SIMD
concept is especially suited for problems like the hydrodynamics simulations presented in this
thesis. The data space of the three-dimensional models grows rapidly as the linear resolution
is raised but the algorithm always stays the same.

Some of the current massively parallel architectures are specialized for support of the data
parallel paradigm. Special programming languages have been developed to facilitate the porting
of existing serial programs. The “Connection Machine 5” (CM-5, TMC (1993), see Figure 3.2) is
one of these systems (actually the CM-5 supports both the MIMD and the SIMD paradigm). The
CM-5 consists of control processors (CPs) which supervise partitions of computing nodes. The
nodes in turn may be equipped with vector units so that a combined parallel vector architecture
results. A CM-5 program is started on one of the CPs. This is called the “host” program. In turn
the host starts up the jobs on the node processors. Parallel data resides in the nodes’ memories
while scalar variables are stored in the host program. Furthermore, the host executes all scalar
operations including scalar loops. Whenever a parallel command is to be executed, the host
sends it directly to the network of nodes and waits for its completion.

7WWW-URL: http://www.epm.ornl.gov/pvm
8WWW-URL: http://www.mcs.anl.gov/Projects/mpi/index.html
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Figure 3.2: The CM-5 parallel supercomputer used for part of the 3D hydrodynamical simula-
tions. A 64 node CM-5 has been installed at the “Gesellschaft für Mathematik und Datenver-
arbeitung” (GMD, WWW-URL: http://www.gmd.de) in St. Augustin in September 1993. Each of
the processing nodes has 4 vector units giving a total peak performance of 8 GFLOP. (Image
Courtesy Thinking Machine Corporation, WWW-URL: http://www.think.com)
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On the CM-5 a special version of FORTRAN called “Connection Machine FORTRAN” (CMF)
is available. It allows direct arithmetic operations on parallel multidimensional arrays, conditional
programming dependent on parallel arrays, parallel loops etc. One special command (CSHIFT)
allows the parallel circular shifting of array elements which is needed for the free streaming
step in the “Lattice Boltzmann Method”. In fact, this is the only command in the LBM that needs
internode communication since elements may be shifted across node memory boundaries
toward neighboring nodes.

CMF is a special product of one vendor (TMC). To standardize data parallel programming
there is an initiative similar to the definition of MPI. The new parallel programming language
standard is called “High Performance FORTRAN” (HPF, Koelbel et al. (1994)). HPF structures
are similar to CMF.

3.4.3 ADAPTOR

A group at the GMD9 in St. Augustin near Bonn has developed a source to source transformation
package called “Automatic DAta Parallelism TranslatOR” (ADAPTOR10 , Brandes (1993)) to
make the data parallel paradigm available for explicit message passing systems like PVM.
ADAPTOR accepts FORTRAN 77 and important parts of FORTRAN 90, CMF and HPF as
input and produces parallel code for a number of different communication models (PVM, MPI,
CMMD, P4 etc.).

ADAPTOR supplies the original program structure with the necessary message passing
subroutines to distribute the data among an arbitrary number of computing nodes. New FOR-
TRAN programs are created which must then be compiled and linked with the message passing
library. The output programming language for these new programs may be selected according
to available compilers (F77, F90, F95, Vector FORTRAN etc.).

Again, the parallel arrays are stored in the node programs. Scalar variables, however, are
not only stored in a host program but they are replicated on each node job. Thus, there is no
need for continuous communication to fetch scalar variables. Only if data is read or written
from or to files does the host broadcast the new values to all nodes. Essentially this is a mixed
MIMD and SIMD model since all node processes work independently once they have retrieved
all necessary scalar variables.

With ADAPTOR, parallel programming becomes readily feasible even for workstations
equipped with a normal F77 compiler and PVM only. Therefore, it provides a very powerful
and easy to use development tool.

3.5 Code Implementation

The “Lattice Boltzmann” algorithm has been implemented by using the FORTRAN and C
programming languages. The flowchart diagram in Figure 3.3 shows the general program
structure. Each individual particle distribution and the marker field is stored in a separate three-
dimensional array. The program first reads a parameter file which specifies the data cube size,
the relaxation parameter, the model sound speed, the number of time steps, the boundary
conditions and the necessary geometries. Next, the geometries are written to the marker field.

9Gesellschaft für Mathematik und Datenverarbeitung mbH / Forschungszentrum Informationstechnik GmbH; The
German National Research Centre for Mathematics and Computer Science / German National Research Center
for Information Technology; WWW-URL: http//www.gmd.de

10WWW-URL: ftp://www.gmd.de/gmd/adaptor
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No

BGK Collision

Yes
Continue simulation ?

Initialize obstacles

Initialize background
Load old cube

Emission / Absorption

Sources

Write data at given timesteps

Do tmax times

Propagation (CSHIFT)

Read parameter file

Figure 3.3: General program structure of the “Parallel 3D Lattice Boltzmann Code”. The param-
eter file, which is read first, contains information about data cube size, relaxation parameter,
model sound speed, geometries etc. The geometries are written to a special marker array
(“Initialize obstacles”). The background density and velocity are translated into the respective
equilibrium particle distributions (“Initialize background”). The time loop consists of four ma-
jor blocks. First, the possible sources are set. Next, the particles are propagated along their
assigned lattice directions into the neighboring cells. Then, possible emission and absorption
effects are handled. Finally, the particles collide using the BGK relaxation method. Note that
in the parallel code only the propagation step (“CSHIFT”) needs node to node communica-
tion. Any other operation is fully local. This makes the method extremely efficient on parallel
architectures.
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The background density and velocity are translated into the respective equilibrium particle
distributions. The time loop consists of four major steps. First, possible sources are applied by
again using the (ρ, 8v) → f eq

qi translation. Then the particles’ free streaming is accomplished via
circular shift operations. Next, emission and absorption cells are handled. Finally, the “red” and
“blue” particles are mixed and their collision is calculated using the BGK relaxation method.

After developing and testing the single computer version, I carried out the parallelization.
First, I used PVM and ADAPTOR to get a code for the cluster of workstations at the MPIfR.
Later, I was granted computing time on the 64 node parallel supercomputer CM-5 located at
the GMD. For the CM-5 the PVM/ADAPTOR code had to be substantially modified to optimally
exploit the parallel vector architecture.

3.5.1 PVM/ADAPTOR Solution

To parallelize the “Lattice Boltzmann Method” under PVM and ADAPTOR I have used a
“host+node” model. One program (the host) is started on one computer. The host starts node
processes on all networked computers and it handles all input/output operations. After reading
variables they are directly passed on to the nodes so that continuous host-node communication
is not necessary.

To be able to change the data cube size without recompilation, all three-dimensional arrays
have been made allocatable, i.e. their size is set only at run time. This alternative also proved
to be faster than using fixed array sizes. The arrays have to be distributed somehow among the
available nodes. One must choose whether to distribute an axis onto the nodes or whether to
keep it completely local. The number of distributed axes should be kept low since distribution
implies the possible need for communication. Node to node communication over the network
is always slower than direct local access to variables.

The slowest varying axis should be distributed first in order to optimize the lo-
cal computations under PVM/ADAPTOR. Complying with the FORTRAN standard I kept
the first two indices local and distributed only the third one. Numerical tests with
the alternative layouts showed that they were up to 4 times slower. The data lay-
out may be defined by special CMF or HPF directives. The necessary CMF version
reads CMF$LAYOUT <ArrayName>(:SERIAL,:SERIAL,:NEWS). Its HPF counterpart is
!HPF$DISTRIBUTE(*,*,BLOCK) :: <ArrayName>. “:SERIAL” or “*” stands for a local
axis while “:NEWS” or “BLOCK” stands for a distributed axis. The data will always be evenly
distributed among the available nodes. An outline of the employed data layout is shown in
Figure 3.4. For all explicit loops over the local inner two indices I additionally issued the
!HPF$INDEPENDENT,LOCAL ACCESS directive which indicates that no parallel operations oc-
cur in those loops. This helps ADAPTOR to produce optimized local code.

At the time of developing the parallel LBM code neither ADAPTOR nor PVM were able to
support parallel input/output operations. Thus, the calculated data cubes had to be transferred
to the host to be written as a file. ADAPTOR supplies a special “host” variable type which has
only one incarnation in the host process. Only these variables may be used for input/output.
Since the three-dimensional arrays are sometimes rather large, it is advisable to transfer and
write the data slicewise. This saves host program memory which can be used for larger data
cubes. A loop over the distributed third axis gradually copies two-dimensional planes into the
host’s memory and appends them to the output file. The array input/output routines have been
written using the programming language C since there is much less memory overhead than in
FORTRAN.
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Figure 3.4: The data distribution under PVM on the cluster of workstations. This layout has been
used for all three-dimensional arrays, i.e. the 2 × 15 particle distributions and the cell marker
array. The third axis (Z) has been distributed since it is varying the slowest in the FORTRAN
environment. This ensures that the local loops can be fully optimized by the compiler.

Recently a “Parallel Input/OUtput System” (PIOUS11, Moyer and Sunderam (1995)) for
PVM has been introduced. This package allows for the writing of data directly from the node
processes onto the disks connected to the nodes. The network transfer of huge amounts of
data is thus circumvented. PIOUS will be used in a future version of the LBM code.

Normally, the complete set of particle distributions is written to a file to be able to continue
the simulation later. However, the data cubes may be rather large (several hundred megabytes)
so that online data reduction is necessary, especially if a time evolution is to be saved to disk.
I have therefore added a subroutine which calculates the actual density and velocity fields
and discretizes them down to 8 bits. The loss of accuracy is bearable for visualization and
animations. However, to calculate individual maps and spectra the full floating point data have
been used.

The code produced by ADAPTOR can be used with an arbitrary number of nodes. Thus,
the LBM program can run on any cluster of workstations. So far, I have successfully tested the
code on a heterogeneous cluster consisting of HP-UX, SunOS and Solaris workstations at the
MPIfR.

3.5.2 CMF Solution

The situation on the CM-5 is quite different compared to the PVM/ADAPTOR model. “Connec-
tion Machine FORTRAN” (CMF) is optimized for using fixed size fully distributed parallel arrays,
i.e. (:NEWS,:NEWS,:NEWS) layout works best. Parallel operations should always work on the
whole three-dimensional arrays. However, this implies the generation of a number of temporary
three-dimensional arrays.

The WHERE command is one of the parallel statements which may need additional temporary
memory. WHERE is the parallel equivalent of the serial IF command. A typical line in CMF code
might be WHERE(A.GT.0) B=SQRT(A) where A and B are parallel arrays. To execute this

11WWW-URL: http://www.mathcs.emory.edu/pious.html
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command, first, a logical condition mask is calculated. In this example the array would hold
the values of the expression (A.GT.0). Next, array B would be set according to the values in
the temporary array. The mask is as big as the involved arrays so that rather large amounts of
memory may be allocated in the case of higher-dimensional variables. More temporary fields
are necessary if the logical expressions are more complicated. Thus, the memory available for
the data cube is drastically reduced.

The problem is far less severe if the temporary arrays are only two-dimensional. This may be
reached if the cube is sliced into planes. A serial loop on the host indicates the plane number.
This loop should run over a local axis. Due to internal data representation the optimal layout for
three-dimensional arrays is now (:SERIAL,:NEWS,:NEWS). The scalar loop thus runs over
the first index. Using this method it is possible to exploit the CM-5 parallel vector architecture
and to minimize the additional temporary storage needs.

All remaining two-dimensional explicit loops had to be transformed into CMF spe-
cific commands. Mostly, the FORALL statement had to be used. It is flexible enough
to set the necessary geometries in one step. To set a circular disk in a two-
dimensional array A at offset (J0,K0) with radius R one would, for example, use
FORALL(J=1:JMAX,K=1:KMAX,(J-J0)**2+(K-K0)**2.LE.R**2) A=1.

Finally, input/output on the CM-5 is simpler than using PVM because the Connection Ma-
chine is equipped with a parallel scalable disk array (SDA) which allows the nodes to directly
write to a distributed hard disk system. Compared to PVM/ADAPTOR this is very fast and easy
to use. In FORTRAN a simple WRITE command is sufficient.

3.6 Code Performance

The performance of parallelized programs is to some degree dependent on the implementation
details. The direct comparison of both codes is difficult because major changes were necessary
for the CM-5 version. Performance also depends on problem size and geometry.

The PVM/ADAPTOR code has been used mainly on three HP 735+ workstations with
roughly 50 MFLOP peak performance each. All three are equipped with at least 144 MByte
main memory. Given the fact that there is a certain limit above which swapping starts and
that one machine has to be used for input/output and thus needs additional storage, the total
memory for 3D data is at most 330 MByte. Thus, the maximum problem size on the three
workstations was around 1403 cells. The individual workstations in the network should have
comparable performances since the data is evenly distributed among the nodes. Slow or heavily
used workstations decrease the total code performance.

If the datacube is rather small (e.g. 323 volume elements), then most of the time is spent
for sending and receiving the messages. The load on each of the three machines never rises
above A 20 to 30% CPU time so that there is no real time gain. It might even take longer than
on a single computer to complete the job. The ratio of the time needed for message passing
versus the time spent for local calculations decreases for larger cubes since the total number
of cells grows faster than the number of cells to be passed between the nodes.

The peak performance on three HP 735+ workstations for the two-phase code, without
emission and absorption, i.e. measuring the pure “Lattice BGK” procedure, lies around 230,000
cells per second excluding input/output. The mean performance for a typical dark cloud flow
setup including an ample amount of emitting and absorbing cells is roughly 112,000 cells per
second. Calculating, for example, 6000 time steps of the evolution of a 270 × 90 × 90 cube thus
takes 33 hours CPU time.
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The CMF code has been used on the 64 node CM-5 of the GMD. Each of the nodes
exhibits a performance of 128 MFLOP including the vector units. Together the maximum peak
performance is 8 GFLOP. Each node has 32 MByte main memory adding up to a total of
2 GByte. Some memory is needed by the system and the program text. Thus, the maximum
problem size is roughly 2503 cells. A scalable disk array (SDA) of more than 20 GByte is
connected to the CM-5. It may be used for parallel input/output directly from the nodes at a
rate of 20 MByte per second. At the GMD the CM-5 is partitioned into 16+16+32 nodes during
daytime and to the full 64 nodes during weekends and public holidays.

The CMF code performance is partly determined by the time needed for the scalar loop
over the serial axis. This cube axis should therefore be the shortest. All axis lengths should
be multiples of 8 to fully exploit the vector units (VU). The larger the absolute sizes the more
efficiently the VUs are used since the computational overhead decreases. Taking again the
typical dark cloud setup the performance for the two-phase code on 64 CM-5 vector nodes is
about 1,400,000 cells per second for a cube size of 64 × 64 × 256 cells. It increases to roughly
1,800,000 cells per second for a data cube size of 96 × 96 × 384 cells. The peak performance
for a large two-phase flow without special cells is 2,500,000 cells per second.

3.7 Simulation Examples

To show the capabilities of the code, I have done several test simulations. In the first example
(Figure 3.5) a localized circular stream flows at a Mach number of 0.8 into a homogeneous
background medium that is first at rest. The inlet density and velocity has been perturbed
randomly to induce the shear instability. No periodic forces have been applied in order to avoid
systematic initial patterns. The second fluid phase has been used to trace the jet streamlines.
The image shows a volume rendering of the second fluid’s density. The flow hits a hard sphere
centrally. At the sphere’s surface the velocity component perpendicular to the surface must
vanish. The resulting shear forces create vortices which eventually become turbulent. Based
on the sphere’s diameter as typical length scale, the Reynolds number is Re = 800. This value is
close to the classical critical Reynolds number of Recr = 2000. Thus, we observe in this example
the transition between laminar and turbulent flow.

The second example shows the time development of an unsteady wake behind a cylinder
(Figure 3.6). The fluid flows from left to right with a Mach number of 0.3. The cylinder is
elongated perpendicular to the inflow. Through three small inlets on the left wall the second
fluid is continuously injected in order to trace the stream structure. The image shows the tracer’s
integrated density. Based on the cylinder’s diameter the range of critical Reynolds numbers for
this type of problem lies between 160 and 210. I have used Re = 300 which is well above
the upper limit. Yet, for much higher Reynolds numbers (> 103) the alternating wake structure
declines and an isotropically turbulent tail develops behind the cylinder.



30 The Parallel Code

Figure 3.5: Turbulent flow around a hard sphere. One fluid phase of the “Lattice BGK” code has
been used to model a stream of matter that flows at a Mach number of 0.8 into a homogeneous
background medium which initially is at rest. The image shows the density of the second fluid
phase which has been used to trace the main flow. The flow hits a hard sphere centrally. Based
on the sphere’s diameter the Reynolds number is 800. Shear forces generate vortices which
indicate developing turbulence. The wedge shows the tracer density color coding. (Volume
rendering visualization done with AVS (WWW-URL: http://www.avs.org)).
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Figure 3.6: This example shows a time sequence of 2D projections of the development of a
wake behind a cylinder. The fluid flows from left to right with a Mach number of 0.3 and a
Reynolds number of 300 taking the cylinder’s diameter as typical length scale. Space and time
coordinates are given in model units. The depth of the cube along the cylinder was 20 pixels.
The second fluid phase has been used to trace the development of the streamlines. It acts like
smoke in a wind tunnel. At three different spots on the left border the tracer fluid is injected
continuously. Its integrated density is coded by the colors in this image. To induce the instability
in the otherwise fully symmetric geometry, I have perturbed the incoming fluid. Note that these
variations have been applied randomly as opposed to the often used periodic forces.
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Chapter 4

Simulations

The parallel 3D “Lattice Boltzmann Codes” have been used to numerically explore turbulent
flows and their contribution to the spatial and velocity structure of interstellar dark clouds.
Quiescent dark clouds are free of the “disturbing” physical processes accompanying massive
star formation. Therefore, only mechanical energy input has been considered. My present
simulations consist of collimated flows into a homogeneous background medium and the motion
of dense clumps through an ambient medium. In the latter case I allow parts of the clumps to be
torn off, so that a turbulent tail develops. No initial hierarchical clumpy or filamentary structure
is presumed. Therefore, all emanating patterns result from the hydrodynamic evolution.

For all geometries the dependence of spatial and velocity structure on Reynolds and Mach
numbers has been studied. The hydrodynamic Reynolds number is defined by

Re =
Lv
ν

(4.1)

where L and v are typical length and velocity scales and ν is the kinematic viscosity (Reynolds
1883). According to Lang (1980) the Reynolds number for neutral hydrogen gas is given by

Re = 2 ⋅ 104ρLvT − 1
2 (4.2)

where ρ is the gas density and T is the kinetic temperature. Thus, the average dark cloud
hydrodynamic Reynolds number is of the order 106 to 107. The present simulations cover a
range of Reynolds numbers from as low as a few hundred up to around Re = 104.5. The upper
limit is given by the spatial flow resolution and by numerical instabilities which develop above the
limit. However, I will show that the typical dark cloud structure is seen at intermediate Reynolds
numbers below 104.5.

From observational data one can also estimate a range of suitable Mach numbers

Ma =
v
cs

(4.3)

where cs is the sound speed. The kinetic temperatures of quiescent clouds are low (10− 100 K)
and the observed molecular linewidths are at most a few times their respective thermal value
∆vthermal . This implies that the flow velocities are of the order of the local sound speed since

∆vthermal = D 8 ln(2)
kT
M

= D 8 ln(2)
kµH 2

γ RM
cs,H 2 (4.4)
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where k is Boltzmann’s constant, R is the gas constant, µH 2 is the hydrogen molecular weight,
M is the mass of the tracer molecule and γ is the ratio of specific heats (7

5 for diatomic
molecules). The tracer molecules are much heavier than the dynamically relevant hydrogen so
that ∆vthermal is only a small fraction of cs,H 2. Thus, non-gaussian spectra may result even from
subsonic flows. In the subsequent simulations a range of Mach numbers from 0.3 to 0.9 will be
explored.

The comparison with observations requires the calculation of projected maps and spectra.
Presently, I assume optically thin radiation so that the intensity is proportional to the integrated
density along the line of sight. I will always show normalized column densities, since the
models are, a priori, scale-free. The velocity information is used to derive artificial spectra.
Hydrodynamical simulations normally cannot reproduce the observed smooth spectra since
they average over a huge number of atoms or molecules and condense all microscopic statistical
information into just one parameter which is the local temperature. Thus, each computational
cell provides one sharp line. This also applies for the “Lattice Boltzmann Method” since it works
on particle packets instead of single molecules. Spectral observations, on the other hand, reveal
the thermal motion of the molecules via broadened lines. It is therefore necessary to convolve
the simulated sharp spectra with a Gaussian having thermal linewidth as defined in equation
4.4. The linewidth depends on the tracer molecule’s mass. Here, I will show spectra for the case
of sulphur monoxide since this molecule will later be used for the comparison with observations
(see chapter 5). All spectral maps will be oriented at a viewing angle of 45o relative to the main
flow axis. This is a mean projection angle which avoids the rather improbable cases of a parallel
or perpendicular view.
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4.1 Collimated Shear Flow

To study the structuring effects of viscous shear forces, I have calculated the evolution of
a collimated flow into a homogeneous background medium at different Reynolds and Mach
numbers. The flow has a circular inlet shape; ambient and inflowing gas have equal densities.
Periodic boundary conditions are assumed along the two axes perpendicular to the inflow
direction. The surface opposite to the inlet is a hard wall which prevents inlet gas from flowing
backwards into the cube. The background gas is free of tracers while the inflowing matter
contains a tracer. The tracer’s density is 105 times lower than that of the main gas. Thus, it is
dynamically irrelevant and just follows the path of the inflowing gas. Astronomically this type
of flow may occur, for example, at the very ends of bipolar outflows when the gas has been
slowed down to subsonic velocities. Viscous forces become increasingly important and lead to
shear instabilities as the flow protrudes further into the quiescent ambient medium.

For the simulations it is necessary to slightly perturb the incoming flow in order to induce the
instabilities. Otherwise the symmetric geometrical setup would lead to completely symmetric
flows. To avoid imprinting systematic flow patterns, no periodic forces have been used. Only
random variations of the inflow density and velocity of up to ±10% of the nominal values have
been applied. The variations have been done continuously for each time step and across the
inlet’s surface so that their spatial and time scales are of the order of the unit lattice length and
unit time. Thus, no large scale structures are introduced.

The flow’s Reynolds number has been calculated by using the inlet diameter as typical
length scale. Different Reynolds numbers have been simulated by varying the gas viscosity
through the BGK relaxation parameter ω (see chapter 2). At low Reynolds numbers (Re < 400)
the shear flow is laminar and symmetric (see Figure 4.1). Only one vortex develops at the tip
of the flow when the moving gas enters the background medium. The viscosity is so large that
any perturbation is completely damped. The spectra are thermal with only slight broadening at
the boundary between background and inflow.

Figure 4.1: Collimated shear flow with a Reynolds number of 200 and a Mach number of 0.6.
The plot shows the integrated intensity perpendicular to the main flow direction after 8500
timesteps. The length of the third axis was 64 cells. At these low Reynolds numbers the flow is
laminar and symmetric.



36 Simulations

With increasing Reynolds number the flow becomes unsteady and oscillatory modes are
excited. Figure 4.2 shows the time evolution of the column density of a collimated flow with
Re = 1000 and Ma = 0.9. The flow is symmetric for the first 2000 time steps. Then, a second
vortex is excited and the flow starts pulsating. As more vortices appear, the flow breaks up into
individual filaments. The interaction between the vortices finally produces an overall asymmetric
flow structure. To show the complicated three-dimensional patterns, I have calculated a 3D
volume rendering image of the tracer density for a shear flow with Re = 1500 and Ma = 0.9
(Figure 4.3). The rendering opacity has been chosen such that the knots and filaments are
clearly seen.

At Reynolds numbers around 1000 the velocity components perpendicular to the main flow
axis are large are enough to produce substructure in the spectral lines. Figure 4.4 shows the
spectra for the last time step of Figure 4.2. They have been calculated for a 45o projection
angle. The velocity interval for each spectrum is four times the sound speed. Towards the flow’s
central region the spectra are broad and at the border between background gas and inflow they
are partly double peaked. Similar structure is seen over the whole range of simulated Mach
numbers. However, below Ma = 0.6 the distinct line structure vanishes due to the thermal line
broadening.

At high Reynolds numbers the flow gets isotropically turbulent. The large scale filamentary
structure become less distinguished and finally it completely disappears for Reynolds numbers
above A 104. Instead the flow is spatially symmetric like in the laminar case but with a cone-like
shape. Figure 4.5 shows an example of a flow at Re = 20000. Due to the isotropic turbulence the
resulting spectra are broad throughout the flow, but they do not exhibit distinct wing or double
peak structure (see Figure 4.6).
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Figure 4.2: Time evolution of a collimated shear flow with Re = 1000 and Ma = 0.9. For the first
2000 time steps the flow is nearly symmetric. The small perturbations then grow non-linearly
toward the large scale spatial asymmetries.
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Figure 4.3: 3D volume rendering of the tracer density for a collimated shear flow with Re = 1500
and Ma = 0.9. The opacity and false colors have been selected to clearly show the knotty and
filamentary structure which is seen only at intermediate Reynolds numbers between 500 and
5000.
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Figure 4.4: Model sulphur monoxide spectra for the last time step of Figure 4.2. The spectra
have been calculated for a viewing angle of 45 o relative to the flow axis. They are superposed
on the column density map at the same projection angle. The velocity interval for each spectrum
is four times the sound speed. Double peaked structures are seen at the border between the
background gas and the inflow. Towards the central flow region the spectra are broad.

Figure 4.5: Column density of a collimated shear flow with Re = 20000 and Ma = 0.6. At high
Reynolds numbers the flow becomes isotropically turbulent. No distinct clumpy and filamentary
structure is seen.
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Figure 4.6: Model spectra for a collimated shear flow with Re = 20000, Ma = 0.6. The spectra
at high Reynolds numbers are broad throughout the flow. They do not exhibit distinct double
peak structure which is seen at lower Reynolds numbers.
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4.2 Cometary Tails

The second set of simulations involves the motion of molecular clumps through an ambient
medium. The kinetic energy of the flow may tear off parts of the cloud which eventually produce
a turbulent tail behind the clump. In the present simulations the initial clump is not dissolved in
order that the tail structure can be studied in detail. Again, I assume equal densities for both
fluid phases. For simplicity I leave the clump position fixed while the background is moving. After
initially setting the background velocity field, the density and velocity values in the first plane of
the data cube are continuously updated to keep the gas flowing. To prevent any molecular gas
to flow back into the cube, I have employed an absorbing plane at the opposite end of the cube.
Periodic boundary conditions are assumed along each of the three cube axes. Similar to the
shear flow simulations I have applied small random fluctuations of up to ±10% to the density
and the velocity of the incoming stream in order to induce the instabilities. The definition of a
Reynolds number for this type of flow is somewhat ambiguous since the typical velocity scale
may either be the background value or the decelerated value just behind the clump. However,
the relevant structure is seen at a distance of more than one clump diameter away from the
initial cloud so that I will give Reynolds numbers based on the clump size and the background
velocity.

The flow is laminar for a Reynolds number below 400. The spectra do not exhibit any special
signature in that regime. Shear instabilities begin to develop at higher Reynolds numbers.
Figure 4.7 shows a time sequence of a cometary flow with Re = 1500 and Ma = 0.6. The
flow starts pulsating after around 5000 timesteps and then produces distinct clumps. The
distance between neighboring clumps is roughly equal to the initial clump diameter. The three-
dimensional structure of the tracer density field for last time step is shown in Figure 4.8. The
fluffy structure around the individual knots is clearly seen.

The spectra at Re = 1500 are thermal even for high Mach numbers. This is due to the
partial permeability of the clump and the large scale background velocity field. Strong forces
are required to build up velocity components perpendicular to the main flow direction. Very
distinct velocity structure appears for Reynolds numbers above around 3000 (see Figure 4.9).
Very narrow spectra are seen toward the initial clump. Behind the clump the spectra are
broader and they exhibit wing structure due to the turbulent motion. The special distribution
of lineshapes is independent of the Mach number. Only the absolute value of the linewidths
changes. Below Mach numbers of 0.6 the components are too small to be seen in the thermally
broadened spectra. The velocity structure also stays the same for higher Reynolds numbers up
to the numerical limit. But above Reynolds numbers of 5000 no distint clumps are seen in the
isotropically turbulent tail. If more than one initial clump are placed into the background flow,
then the individual tails interact non-linearly to produce more complex structure. Figure 4.10
shows a 3D volume rendered image of three clumps which have been grouped together. The
tail structure is much more complicated than in the single clump case.
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Figure 4.7: Time evolution of the development of a pulsating tail behind a dense clump with a
Reynolds number of 1500 and a Mach number of 0.6. Each panel shows the column density
perpendicular to the main flow axis. After around 5000 timesteps the flow starts oscillating.
Later, individual clumps are produced.
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Figure 4.8: 3D volume rendering of the density field of the last timestep of Figure 4.7. This image
clearly shows the fluffy structure around the distinct knots. The distance between neighboring
knots is roughly equal to the diameter of the initial clump.

Figure 4.9: Model spectra of a cometary tail simulation with Re = 3000 and Ma = 0.6. The
spectra are superposed on the column density map. The projection angle is 45 o with respect
to the main flow axis. Very narrow thermal spectra are seen toward the initial clump while the
spectra are broader and asymmetric in the tail. This distribution is characteristic for this type of
flow.
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Figure 4.10: 3D volume rendering of the turbulent flow structure behind three dense clumps. If
more than one clump is grouped together, then the individual tails interact to produce increas-
ingly complicated flow patterns.
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4.3 Results

Two main conclusions are to be drawn from the simulations. (1) Distinct spatial and velocity
structure is seen only for the transition between laminar and isotropically turbulent flow at
Reynolds numbers between 500 and 5000 and (2) subsonic viscous shear flows are able to
generate lineshapes similar to the ones observed toward interstellar cold dark clouds. The
occurrance of well-defined structure in the transitional regime between the highly ordered
laminar and the completely random turbulent patterns may be interpreted in the framework of
the “Edge of Chaos”. This phrase had been coined by Packard (1988) and Langton (1990) who
concluded from experiments with cellular automata that the storage capacity of a system is
largest at the transition between two phases. Complex systems, such as the interstellar clouds,
seem to exist only in narrow transitional regimes.

The rather low intermediate Reynolds numbers seem at first incompatible with the much
higher values of around 107 derived from the physical parameters of dark clouds. However,
when taking magnetic fields into account, the effective Reynolds numbers may be much lower
if the coupling between the magnetic field and the gas is strong enough. Myers and Kher-
sonsky (1995) estimated the magnetic Reynolds number, ReM , for several components of the
interstellar medium. ReM is defined by

ReM ∝ LvρT 0.5B −2xe (4.5)

where ρ is the gas density, T is the kinetic temperature, B is the magnetic field strength and
xe is the electron fraction due to cosmic ray ionization and photoionization through star light.
Adopting magnetic field strengths around 15µG and electron fractions of A 10−5 Myers and
Khersonsky derive ReM values of the order 101.2 to 103.4 for dark clouds. This is in the range
that has been predicted from the simulations. Magnetic fields may thus play an important role
in the dynamics of the most quiescent part of the interstellar medium.
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Observations

To compile a database of molecular cloud observations for the comparison with theoretical
models we (J. Schmid-Burgk and D. Muders) have begun to map a number of regions, either
quiescent or actively star forming, with the MPIfR 100m radio telescope at Effelsberg. We used
the relatively new receiver for the 26 GHz to 36 GHz band as well as the 1.3 cm maser receiver
to obtain mostly sulphur monoxide (SO) and ammonia (NH3) data. The ground transition of
sulphur monoxide (SO 10 − 01) proved to be a good tracer of spatially extended dark cloud
structure (Schmid-Burgk and Muders 1994).

5.1 Lynds 1512

For the comparison with the model calculations I have selected one source, the dark cloud
L1512 (Lynds 1962), which is located approximately 140 pc away (Elias 1978) in the Perseus
Taurus region at α1950 = 5h0m54.4s δ1950 = 32o29′ 0′′ (ammonia peak position by Myers and
Benson (1983)). The mean LSR velocity of L1512 is 7.1 km s−1. Our own Effelsberg observations
of the ammonia (1,1) inversion line exhibit one dense core peaking at an offset of (− 30′′ ,30′′ ).
The NH3(2,2) line is not seen. Therefore, the gas temperature in this dense region must be of
the order 10 K. This is consistent with the value given by Myers and Benson. H2 gas densities
have been estimated by Cox (1995). He applied an LVG formalism on C3H2 observations and
derived approximately 105 cm−3 toward the peak position of the dense core. No IRAS sources
are associated with L1512 and the ammonia linewidths are barely above the respective thermal
value. Therefore, L1512 is thought to be one of the most quiescent dark clouds with no evidence
of ongoing star formation. Yet, it exhibits spatial and velocity structure as will be shown below.
It is thus an ideal candidate to search for the basic structure forming flows in the interstellar
medium.

5.1.1 Sulphur Monoxide Observations

The L1512 region has been mapped in the ground transition of sulphur monoxide (SO 10 − 01)
at 30.001539 GHz using the 100m telescope at Effelsberg. At 30 GHz the FWHM of the beam
is 30′′ . The spectra were taken with the autocorrelator split into two parts of 512 channels, each
with 1.56 MHz bandwidth. Thus, the velocity resolution is A 0.03 km s−1. The spectra from both
autocorrelator parts were co-added to get roughly 10% lower noise temperatures. Pointing was
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checked regularly on nearby continuum sources. The cross scans have also been used for
calibrating the sulphur monoxide data to a main beam brightness temperature scale.

For the first time at Effelsberg we used the “On-The-Fly” mapping method for spectral line
observations. The telescope is scanning continuously along the columns or rows of the maps
while dumping the spectra at given times. This saves up to 30% of real observing time since
the telescope does not have to stop between the individual grid points. We used “On-The-Fly”
mapping to first coarsely search for emission in large areas and then thoroughly map the regions
of interest. To minimize beam distortions, the distance between two grid points must be smaller
than the beam width. We used a scanning velocity of 30′′ per minute and dumped a spectrum
every 30 seconds, i.e. spatially every 15 seconds of arc. These fully sampled maps have been
done several times for each region with changing scanning directions (either Right Ascension
or Declination) to check for pointing accuracy and calibration consistency. We observed mainly
by frequency switching with a splitting frequency of 0.4 MHz, roughly one fourth of the total
bandwidth. This value ensured ample separation of positive and negative signal and avoided
edge effects. Compared to position switching we gained about a factor of two in observing time.

We have taken more than 16000 individual spectra distributed over an area of 600′′ × 900′′ .
Some automatization in the reduction process was therefore necessary. In the first step all bad
weather spectra have been discarded by using only observations with system temperatures
below A 400 K. From the remaining spectra a baseline of at most first order has been subtracted.
Bad channels, ripples and autocorrelator failures have been detected via Fourier analysis.
Calibration and pointing deviations for maps of the same region were typically less than 20%
which is in the range of the receiver / backend accuracy. Therefore, no large scale corrections
were necessary (note that this is valid over three wintertime observing periods !). The mean
total integration time per point after co-addition is about 4 minutes. For the final maps we added
the spectra of four neighboring points of the fully sampled map to lower the r.m.s. noise by
another factor of two.

5.1.2 Sulphur Monoxide Maps

The sulphur monoxide spectra are shown in Figure 5.1. The plot contains only one spectrum
per beam to avoid overcrowding. The velocity range for each spectrum is 6.17 to 7.88 km s−1

and the maximum main brightness temperature is 2.75 K. The size of L1512 is 0.9 ⋅ 1018 cm
along right ascension and 1.7 ⋅1018 cm along declination. Very narrow unperturbed spectra are
found at the southern edge of the dark cloud. The smallest FWHM linewidths in that region are
around 0.15 km s−1. Towards the north the SO spectra are broader (up to 0.4 km s−1) and they
have asymmetric lineshapes.

The velocity integrated intensity shows the clumpy structure of L1512 (Figure 5.2). Several
clumps of different size are located in a tail-like structure roughly along a south-west to north-
east axis. The southernmost clump has a sharp edge. No distinct sulphur monoxide emission
is seen toward the ammonia peak position at (− 30′′ ,30′′ ). This indicates that SO traces a spa-
tially extended medium with physical conditions rather different from those seen with ammonia.
Therefore, the temperature and hence the local sound speed derived from the ammonia data
cannot be used for the comparison with the dynamical models. To estimate the physical param-
eters, I have used the spectra of the southern clump in L1512. Their symmetric unperturbed
structure suggests that the linewidths are near the local thermal value. Using equation 4.4 with
the smallest linewidth of 0.15 km s−1 I derive T = 20 K and cs,H2 = 0.35 km s−1.
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The velocity structure of L1512 is revealed by the channel maps (Figure 5.3). Remember
that the cloud’s systemic velocity is 7.1 km s−1. At blueshifted velocities (6.45−6.75 km s−1) there
is a distinct streamer-like object. Its head is located at (− 40′′ ,130′′ ). Its tail points toward the
north-west. At redshifted velocities (7 − 7.36 km s−1) an elongated structure with three separate
large clumps emerges. Both structures overlap in the intermediate velocity range. To get a
clearer view of the kinematic structure of L1512, I have constructed a “true color” image (Figure
5.4). The Doppler shifted velocity has been coded as blue and red colors while the intensity
corresponds to the line brightness temperature. Thus, the true color plot simultaneously shows
spatial and velocity structure. Here, the velocity interval from 6.7 km s−1 to 7.2 km s−1 has been
used. Again, the redshifted clumpy pattern appears on the eastern side of the source. The
blue streamer’s distinct velocity is clearly seen. Its head is located at the inner corner of the
redshifted emission region. The spatial coincidence of both structures leads to the broad and
double peaked spectra (see Figure 5.1). Both tails, red- and blueshifted, meet at the northern
edge of the map.

5.1.3 Palomar Plate

The L1512 region has also been inspected on the red Palomar plate contained on CD-ROM12.
To enhance the dark cloud contrast, the stars had to be removed from the image. To this end,
I have marked all parts above a photographic density of 0.53 which was the limit where stars
started to become visible. I then calculated the mean intensity and r.m.s. of the remaining plate
pixels’ intensities. These values have been used to fill the “star holes” with white noise. Finally,
the data have been resampled to the SO map’s resolution to get a smoother image. The result
is shown in Figure 5.5. The contours of the integrated sulphur monoxide map (Figure 5.2) are
superposed.

The optical plate reveals two large “twisted” drop-like clumps. The southern clump is denser
than its northern counterpart. The clumps are surrounded by bright filamentary emission which
extends further outwards in four different directions. The filaments are probably seen as a result
of scattering star light by small amounts of dust grains. The SO emission follows the general
geometrical outline of the extinction pattern. However, the SO maxima do not coincide with
the densest regions. On the contrary, they mostly appear at the edges of the dark clumps.
Remarkably, the SO emission extends along the filamentary tracks. Redshifted SO emission is
seen on the lower western and the northern filament while the blueshifted tail splits up into two
paths on the upper western and the northern filament. Weak SO emission seems to extend
also along the eastern filament.

12Based on photographic data of the National Geographic Society – Palomar Observatory Sky Survey (NGS-
POSS) obtained using the Oschin Telescope on Palomar Mountain. The NGS-POSS was funded by a grant
from the National Geographic Society to the California Institute of Technology. The plates were processed into
the present compressed digital form with their permission. The Digitized Sky Survey was produced at the Space
Telescope Science Institute under US Government grant NAG W-2166.
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Figure 5.1: SO 10 − 01 spectra toward L1512. The velocity range for each box is 6.17 to
7.88 km s−1. The plot shows only one spectrum per beam to avoid overcrowding. Some edge
spectra exhibit a rather low signal to noise ratio due to insufficient observing time. The general
structure of L1512 appears to be elongated roughly along a south-west to north-east axis. The
southernmost spectra are very narrow (0.15 km s−1). Towards the north the spectra are broader
and they exhibit asymmetric line shapes and double peaks.
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Figure 5.2: Integrated SO 10 − 01 intensity toward L1512. The contours and grey scale start at
0.2 K km s−1. Contour steps are in increments of 0.1 K km s−1. A tail of clumps of different size
extends from the south to the north. Note the sharp edge of the southernmost clump.
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Figure 5.3: Channel maps of SO 10 − 01 emission toward L1512. Each bin is 0.06 km s−1

wide. Center velocities are marked in the upper right corner in km s−1. The contours have been
drawn in steps of 0.5 K starting at 0.5 K. The greyish background delineates the extent of the
SO map. At blueshifted velocities a distinct streamer-like object is seen. Its head is located at
an offset of (− 40′′ ,130′′ ). The redshifted SO emission exhibits a clumpy tail emerging from the
very quiescent southern clump.



Observations 55E

Figure 5.4: True color plot of SO 10−01 emission toward L1512. The colors have been calculated
according to the Doppler shifted velocities along each line of sight. Blue is at 6.7 km s−1, red
at 7.2 km s−1. The SO intensity is coded by the color brightness. True color plots allow the
simultaneous representation of spatial and velocity structure.
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Figure 5.5: Red Palomar plate of the region around the dark cloud Lynds 1512. The stars have
been removed to enhance the dark cloud’s contrast. The original image has been smoothed
to the SO map’s resolution of 30′′ . The contours of the integrated SO intensity from Figure 5.2
have been superposed. The Palomar data exhibit two large drop-like clumps. Those clumps
are surrounded by bright filamentary emission. At four different positions the filaments extend
further outwards into the ambient medium (see the white line drawings in the figure). The SO
emission follows the general extinction pattern. However, the SO maxima are mostly located on
the edges of the clumps. Remarkably, the SO emission seems to follow the optical filaments.
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5.2 Simulation versus Observation

The sulphur monoxide spectra of L1512 show a velocity structure that is typical for cold dark
clouds. The linewidths are at most a few times the thermal value and the line shapes are
mostly asymmetric. The hydrodynamical simulations (see chapter 4) have shown that such
a structure may be generated by subsonic turbulent shear flows at Mach numbers between
0.6 and 0.9 and at rather low Reynolds numbers of the order 500 to 5000. I interpret the
transition of narrow bright spectra in the south of L1512 to the broader spectra in the north as a
dynamical evolution originating from the southern clump with its unperturbed structure. Shear
forces tear off parts of the cloud and produce the turbulent tail structure while the clump moves
through the ambient medium in roughly southerly direction. The simulated spectra for such a
hydrodynamical interaction at a Mach number of 0.6 are shown in Figure 5.6 at a viewing angle
of 45o relative to the main flow axis. Note that the systemic velocity difference along the whole
tail is only one fourth of the sound speed. This is due to the partial permeability of the model
clump at the tail’s head. The relative velocities between the clump and the ambient medium are
thus lower than 0.6 cs. In L1512 the velocity difference is 0.1 km s−1 = 0.29 cs. This is consistent
with the model prediction.

To produce such a tail, the clump in L1512 must move with a velocity of the order 0.21 km s−1.
Thus, the dynamical age of L1512 is around 1.1⋅106 years. The hydrodynamical Reynolds num-
ber of L1512 can be estimated from equation 4.2. It is of the order 3⋅106 assuming an H2 density
of 104 cm−3 and a typical clump diameter of 2 ⋅1017 cm. It is two orders of magnitude higher than
the model prediction. This may indicate that magnetic fields are dynamically relevant since the
magnetic Reynolds number for interstellar dark clouds is in general lower than the respective
hydrodynamic Reynolds number (Myers and Khersonsky 1995). If L1512 is magnetically dom-
inated then equation 4.5 predicts a magnetic field strength of the order 4 to 14µG assuming
cloud ionization through cosmic rays only. Additional photoionization through ultraviolet star
light would lead to a slightly higher field strength.

The described model cannot account for the blue streamer and the filaments seen in sulphur
monoxide. The comparison with the Palomar data indicates that additional effects on the clump
“surfaces” may play an important role since sulphur monoxide emission is nearly always seen
at the edges of the dark clouds. Depending on the detailed clump distribution, the main flow
might be partially redirected so that we observe different radial velocities. In the case of the
filaments dust and gas would be reflected and would protrude into the ambient medium along
the surface tangents. However, there are two arguments against this model. Firstly, there is
no significant velocity gradient along the filaments and secondly, it is difficult to imagine really
“hard” clump surfaces. The interaction of the flow with an embedded magnetic field would be
more realistic.

One might also argue that the optical filaments are signs of Mach cones. The projected
full opening angle of roughly 90o predicts a Mach number of larger than 1.4. This picture
would also answer the question why sulphur monoxide is seen at all since it is believed to be
produced mainly through magneto-hydrodynamical C-type shock interaction (Pineau de Forêts
et al. 1993). However, the very quiescent spectra of the southern clump then pose a new puzzle
because there one would expect highly disturbed structure.

Concluding, I propose the cometary tail model to explain the overall velocity structure of
L1512 with the distinct distribution of narrow and broad spectra. To explain the details such
as the blue streamer and the optical filaments more observational data from other molecular
transitions, as well as better optical or infrared images, are necessary.
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Figure 5.6: Model sulphur monoxide spectra of a cometary tail with a Reynolds number of 3000
and a Mach number of 0.6 at a projection angle of 45 o. The velocity interval for each spectrum
is four times the local sound speed. The transition from narrow spectra in the head toward the
broader spectra in the tail is a distinct signature of a cometary flow. The velocity gradient across
the tail is only one fourth of the sound speed since the main clump is partially permeable. The
same structure is found in the sulphur monoxide data of L1512 (see Figure 5.1).
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Summary and Conclusion

The focus of this thesis work has been the investigation of the physical processes that create
the clumpy and filamentary structure in cold interstellar molecular clouds. The prevalent gas
flows are supposedly turbulent so that their detailed spatial and velocity structure can only be
studied by numerical calculations. In this thesis I have introduced the recently developed “Lattice
Boltzmann Method” (LBM) as a new tool to perform computational fluid dynamics. This is, to
my knowledge, the first astrophysical application of the LBM. The “Lattice Boltzmann Method”
calculates the evolution of particle packets that move with discrete velocities on a lattice. The
simulation of the microscopic gas structure automatically guarantees global conservation laws
and allows the implementation of arbitrarily complex objects. The LBM is perfectly suited for
the application on parallel or clustered computers, a technology that currently emerges as the
most promising way to provide the necessary performance to tackle long-standing problems
like the simulation of three-dimensional turbulent flows.

As part of my thesis I have developed a three-dimensional parallel “Lattice Boltzmann”
Navier-Stokes solver based on the “D3Q15” methods by Qian et al. (1992) and Chen et al.
(1993) and the fourth order corrections by Chen et al. (1994). I have improved the numerical
stability by introducing a selective viscous damping method which prevents the growth of large
velocity gradients that would eventually lead to a numerical collapse. It is now possible to
simulate three-dimensional flows with Mach numbers of up to 0.9 and at Reynolds numbers
of up to 104.5. I have added a second miscible fluid to model the molecular hydrogen and the
tracer molecules, the two main components of dark clouds, separately. The code has been
first parallelized for clusters of individual workstations using the PVM (Parallel Virtual Machine,
Beguelin et al. (1991)) and ADAPTOR (Automatic DAta Parallelism TranslatOR,Brandes (1993))
packages. For the simulations I have used the three most powerful workstations (HP 735+)
currently available at the “Max-Planck-Institut für Radioastronomie” (MPIfR) in Bonn. In parallel,
they have a peak performance of 150 MFLOP and a main memory of 420 MByte. This allowed
to simulate cube sizes of up to 1403 voxels within 2 to 3 days CPU time.

However, for the systematic exploration of the parameter space the results must be available
in shorter time. Therefore, I applied for computing time on the massively parallel mainframe
“Connection Machine 5” (CM-5, TMC (1993)) at the “Gesellschaft für Mathematik und Datenver-
arbeitung” (GMD) in St. Augustin near Bonn. The 64 node at the GMD has a peak performance
of 8 GFLOP and a main memory of 2 GByte. I have ported the code to the data parallel program-
ming language CM FORTRAN. The PVM program structure has been changed to a slicewise
algorithm that proceeds plane by plane through the 3D data cubes. Thus, the generation of
temporary arrays is minimized and the combined vector parallel architecture of the CM-5 is fully
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exploited while sufficient memory remains for the data. The CM-5 code was typically 10 to 15
times faster than the PVM solution, thus allowing for the completion of one run in a few hours.

I have used the LBM code to simulate collimated shear flows and cometary tails behind
molecular clumps which move through an ambient medium. I have studied the dependence of
the emerging spatial and velocity structure on the Reynolds and Mach numbers. The simulations
show that distinct clumpy and filamentary structure is seen only for a small range of Reynolds
numbers between 500 and 5000. Subsonic viscous shear flows with Mach numbers as low as
0.6 are capable of producing asymmetric line shapes or double peaks. The rather low Reynolds
numbers seem at first incompatible with the values derived from dark cloud observations. The
purely hydrodynamic dark cloud Reynolds numbers are of the order 106 to 107. However,
magnetic fields may lower the effective Reynolds number by several orders of magnitude if
the coupling between ionized and neutral gas is strong enough. Myers and Khersonsky (1995)
estimated the dark cloud magnetic Reynolds number to be of the order 101.2 to 103.4. The
corresponding magnetic field strengths are around 10 to 30µG. The occurrance of distinct
clumps and filaments at intermediate Reynolds numbers, between the highly ordered laminar
and the chaotic isotropically turbulent patterns, may also be interpreted in the framework of
the “Edge of Chaos”. This phrase had been coined by Packard (1988) and Langton (1990) to
describe the tendency of complex systems, such as interstellar dark clouds, to exist only at the
transition between different phases.

To compare the simulations with observed data, I have mapped the cold dark cloud Lynds
1512 with the MPIfR 100m radio telescope at Effelsberg. L1512 does not exhibit any sign of
massive star formation. Therefore, it is thought to be one of the most quiescent dark clouds. I
have obtained fully sampled maps of the ground transition of sulphur monoxide at 30 GHz. For
the first time the “On-The-Fly” mapping method has been successfully used for spectroscopic
measurements at Effelsberg. In that mode the telescope is moving continuously along the rows
or columns of the map while the spectra are dumped at given times. Thus, the time for the
stops between individual grid points is saved. Most of the spectra have been taken in frequency
switching mode to gain about a factor of two in observing time. The resulting sulphur monoxide
maps show a knotty tail-like structure with very narrow lines toward a large clump in the south
and with broader lines in the tail. A distinctively blueshifted streamer is seen toward the north-
west of the source. The sulphur monoxide spectra toward L1512 are representative for the class
of cold dark clouds. The comparison with the simulations shows the close similarity between
the observed and the theoretical spectra. The distinct transition from narrow to broad spectra
is indicative of a turbulent tail evolution. The resulting dynamical age of L1512 is around 106

years. The magnetic field strength toward L1512 must be around 4 to 14µG to arrive at the
predicted Reynolds numbers of a few thousand.

This thesis has demonstrated that the “Lattice Boltzmann Method” provides a new powerful
tool to do computational fluid dynamics on parallel computers. In the future the scope of the
method should be extended toward a working 3D thermo-hydrodynamics model that is capable
of simulating supersonic flows. Thus, the more energetic interstellar events like bipolar outflows
or stellar winds can be modelled. Magneto-hydrodynamics should be included since magnetic
fields seem to play an important role for the dynamics of interstellar clouds. The calculation of
the simulated spectra should include radiation transport for optically thick lines. New measures
of complexity have to be developed to quantitatively compare simulations and observations. To
this end, the existing theoretical work on complex systems should be taken into account. The
comparison of radio data to the Palomar plate has shown that observations of dark clouds at
optical wavelengths may provide new insights into the dynamics of these objects. Therefore,
better optical observations of particular sources such as L1512 should be obtained.



Bibliography

Adler, C., d’Humières, D., and Rothman, D. Surface tension and interface fluctuations in
immiscible lattice gases. 1994, Journal de Physique I (France), 4, 29–46.

Alexander, F.J., Chen, S., and Sterling, J.D. Lattice Boltzmann Thermodynamics. 1993, Phys.
Rev. E, 47, R2249.

Appert, C. and Zaleski, S. Dynamical liquid-gas phase transitions. 1993, Journal de Physique
II, 3, 309–337.

Bagnoli, F., Rechtmann, R., and Zanette, D. Thermodynamics of lattice gas models with
discrete velocities. 1993, Revista Mexicana de Fisica, 39, 763–774.

Beguelin, A.L., Dongarra, J.J., Geist, G.A., Manchek, R.J., and V.S., Sunderam. “A users’
guide to PVM parallel virtual machine”. Technical Report ORNL/TM-11826, Oak Ridge
National Laboratory, Oak Ridge TN, July 1991.

Behrend, O., Harris, R., and Warren, P.B. Hydrodynamic behavior of Lattice Boltzmann and
Lattice BGK models. 1993, electronic preprint: comp-gas/9308001, .

Bernoulli, Daniel. Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Argen-
torati, 1738.

Bhatnagar, P.L., Gross, E.P., and Krook, M. 1954, Phys. Rev., 94, 511.

Blitz, Leo. Giant molecular clouds. In Levy, Eugene H. and Lunine, Jonathan I., editors,
Protostar and Planets III, pages 125–162, Tucson & London, 1993. The University of
Arizona Press.

Boghosian, B.M. Lattice gas hydrodynamics. 1993, Nuclear Physics B, Proceedings Supple-
ments, 30, 204–210.

Boltzmann, L. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten
materiellen Punkten. 1868, Wien. Ber., 58, 517.
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ihr Verständnis und die schöne Zeit in der normalen Welt.

65



66



Lebenslauf

Dirk Muders, geboren am 10. März 1966 in Boppard am Rhein als erstes Kind von Ingrid
Muders geb. Lief und Karl Muders

1972−1976: Besuch der Grundschule in St. Goar

1976−1985: Stefan-George-Gymnasium in Bingen / Rhein

Juni 1985: Abitur

WS 1985/86: Beginn des Physikstudiums an der Johannes-Gutenberg-Universität Mainz

Oktober 1987: Vordiplom in Physik

SS 1988: Wechsel zur Rheinischen Friedrich-Wilhelms-Universität Bonn zur
Fortsetzung des Studiums der Physik und zur Aufnahme des Studiums der
Astronomie

Sommer 1989: Teilnahme an der Sommerschule des Max-Planck-Instituts für
Plasmaphysik in Garching bei München
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