Kontakt

Prof. Dr. Gerd Weigelt
Direktor (em.) und Leiter der Forschungsgruppe "Infrarot-Astronomie"
Telefon:+49 228 525-243

Max-Planck-Institut für Radioastronomie, Bonn

Prof. Dr. Keiichi Ohnaka
Telefon:+56 55 2355493

Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile

Dr. Karl-Heinz Hofmann
Telefon:+49 228 525-290
E-Mail:khh@...

Max-Planck-Institut für Radioastronomie, Bonn

Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Telefon:+49 228 525-399

Max-Planck-Institut für Radioastronomie, Bonn

Originalveröffentlichung

Links

Turbulente Bewegungen in der Atmosphäre eines fernen Sterns

Erfolgreiche Kartierung der Atmosphäre des roten Überriesen Antares mit einer neuartigen Methode

21. August 2017

Zum ersten Mal ist es einem Forscherteam gelungen, die turbulenten Bewegungen in der Atmosphäre eines anderen Sterns als der Sonne zu kartieren. Dies gelang mit Hilfe einer innovativen Methode, die gleich drei Teleskope der europäischen Südsternwarte ESO auf dem Paranal im nördlichen Chile miteinander verbindet. Der Astronom Keiichi Ohnaka von der Universidad Católica del Norte in Antofagasta, Chile, ist der Leiter des Teams. Zusammen mit seinen Partnern Gerd Weigelt und Karl-Heinz Hofmann vom Bonner Max-Planck-Institut für Radioastronomie hat er bisher nicht gekannte geschwindigkeitsaufgelöste Bilder von der Oberfläche und der Atmosphäre eines fernen Sterns erzielen können.

Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Nature veröffentlicht worden.
<p class="Body"><em>Erstes aufgelöstes Bild des roten Überriesensterns Antares. Es zeigt die Sternscheibe in Gelb mit zwei stärker strahlenden Regionen in Weiß, dazu die ausgedehnte klumpige Atmosphäre des Sterns in Blau. Die gewaltige Ausdehnung von Antares übertrifft den der Erdbahn um das Dreifache. Der Sterndurchmesser ist 700mal größer als der Durchmesser der Sonne. </em></p> Bild vergrößern

Erstes aufgelöstes Bild des roten Überriesensterns Antares. Es zeigt die Sternscheibe in Gelb mit zwei stärker strahlenden Regionen in Weiß, dazu die ausgedehnte klumpige Atmosphäre des Sterns in Blau. Die gewaltige Ausdehnung von Antares übertrifft den der Erdbahn um das Dreifache. Der Sterndurchmesser ist 700mal größer als der Durchmesser der Sonne.

[weniger]

Dem Forscherteam ist es gelungen, sowohl die Intensität als auch die Geschwindigkeit des Gases über die komplette Ausdehnung der Oberfläche und der Atmosphäre des roten Überriesensterns Antares zu vermessen. Antares (Alpha Scorpii) liegt in einer Entfernung von ca. 600 Lichtjahren in Richtung des Sternbilds Skorpion. „Zum ersten Mal haben wir eine zweidimensionale Karte der Dynamik, das heißt, der Bewegungen in der Atmosphäre, eines anderen Sterns als der Sonne erhalten. Unsere Beobachtungen wurden mit dem VLTI der ESO durchgeführt, wobei die einzelnen Teleskope mit dem AMBER-Instrument miteinander verknüpft wurden. Die Geschwindigkeit des Gases konnte dabei über Verschiebungen der Frequenz von Spektrallinien aufgrund des Dopplereffekts bestimmt werden“, erklärt Keiichi Ohnaka, der Erstautor der Studie.

Wenn Sterne das Ende ihrer Lebensdauer erreichen, beginnen sie damit, Materie von ihrer Oberfläche und aus ihrer Atmosphäre zu verlieren; dieser Prozess wird als Massenverlust bezeichnet. Während man von roten Überriesen wie Antares seit längerem weiß, dass sie einem beträchtlichen Massenverlust unterliegen,  ist es immer noch unbekannt, wie das passiert – ein seit mehr als einem halben Jahrhundert bestehendes noch ungelöstes Problem. Eine der besten Möglichkeiten, diesen Prozess zu untersuchen, besteht in der Beobachtung der Gasdynamik, Bewegungen und Geschwindigkeiten in der direkten Umgebung des Sterns. Einige Bilder von Sternoberflächen sind bereits vorher erstellt worden, aber nur für eine sehr eingeschränkte Anzahl von Sternen und ohne Informationen über die Gasbewegung in der Atmosphäre.

Einzelteleskope sind nicht dazu in der Lage, Oberflächenstrukturen von Sternen mit Ausnahme unserer Sonne aufzulösen. Wenn man allerdings die Strahlung einer Reihe von Einzelteleskopen „interferometrisch“ miteinander verknüpft, kann die dafür erforderliche hohe Winkelauflösung erzielt werden. Diese Beobachtungsmethode wird als „Interferometrie“ bezeichnet. „Die damit erreichte Auflösung ist proportional zum Abstand der beteiligten Teleskope“, erklärt Karl-Heinz Hofmann. „Wie haben das AMBER-Instrument am Very Large Telescope Interferometer der ESO für unsere Messungen eingesetzt, weil es Beobachtungen mit hoher spektraler Auflösung und die Messung von Gasgeschwindigkeiten ermöglicht.“

„Wenn wir Karten der Gasbewegung in unterschiedlichen Höhen durch die Sternatmosphäre erhalten, ergibt sich damit sogar ein dreidimensionales Bild der Gasbewegung in der Atmosphäre des Sterns“, betont Keiichi Ohnaka. Das Forscherteam arbeitet inzwischen an diesem Projekt des Übergangs von zwei auf drei Dimensionen. Das Ziel dabei ist, das Geheimnis hinter dem Massenverlustprozess zu lösen.

Die Bilder von Antares geben neue Hinweise darauf, wie der Massenverlust bei diesem Stern vor sich geht. Das Forscherteam kann zeigen, dass die Materie nicht in geordneter Form ausgeworfen wird, sondern zufällig verteilt und in turbulenter Weise.

“Diese Methode der interferometrischen Abbildung ermöglicht uns nicht nur die Untersuchung von Sternen in späten Entwicklungsphasen, sondern auch sehr junge Sterne mit noch vorhandener zirkumstellarer Scheibe, in der Planeten entstehen können, oder auch extragalaktische Objekte“, schließt Gerd Weigelt. „In allen diesen Untersuchungen ist es von größter Wichtigkeit, dass wir sowohl eine hohe Winkelauflösung als auch eine hohe spektrale Auflösung erzielen, um die Geschwindigkeitsverteilung des Gases zu erforschen.“ In der Zukunft wird das neue Interferometrie-Instrument MATISSE der ESO eine einzigartige Möglichkeit bieten, solche Beobachtungen zum ersten Mal in einem ausgedehnten Wellenlängenbereich zu erzielen.  

 
loading content