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Introduction



Flows in nature: tendency to become disorderly (turbulent)

Turbulence behind a grid, 1 inch mesh size, the Reynolds number is 1500. The 
instability of shear layers leads to turbulence downstream (Fig. 152, van Dyke 1982).

Highly recommended: https://youtu.be/1_oyqLOqwnI



https://youtu.be/NplrDarMDF8

https://youtu.be/NplrDarMDF8


Turbulent flows are

 highly disorganized and yet contain structures on all scales,

 velocity, pressure, etc., appear unpredictable in detail,

 and yet are reproducible in statistical sense (average values, 
standard deviations, etc.).  



Turbulence is

a) a random flow of a liquid or gas,

b) where energy is transferred from large to small scales,

c) and dissipates there.

Each of a)–c) is an essential feature of turbulence  



Turbulence requires a continuous supply of energy from

 instabilities of a laminar flow (e.g., shear instability, magneto-
rotational instability in accretion discs);

 buoyancy, convection, etc.;

 external forces, e.g., supernova explosions in the ISM;

 … … 



Significance of turbulence

Augments molecular transport and causes mixing within the gas 
or fluid.

Transfers energy from large scales to smaller scales where it 
dissipates into heat leading to enhanced viscosity, heat transfer, 
turbulent diffusion.

Generates coherent structures (flow structures, large-scale 
magnetic fields via dynamo action).
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Elements of random functions



Turbulent flows are random

 velocity  𝑣, pressure p, magnetic field 𝐵, density , etc.
are random functions of position  𝑥 and time 𝑡.

A(x) is called a random 
function of the variable x if 
A(x) is a random variable for 
any fixed value x.

Realizations of a random 
function of time, x(t)



2.1. Ensemble, volume and time averaging

 Ensemble averaging: averaging over different realizations of the 
random function.

 Volume/time averaging: averaging of a single realization of a 
random function over a region in space or time interval.

Ensemble averages appear in theory but are very difficult to 
measure or compute as they require a very large number of 
realizations to converge (often, millions of realizations).



Ergodic random functions:

statistical properties obtained by averaging a set of its realizations 
(ensemble averages) are, with unit probability, equal to those 
obtained by averaging a single realization for a sufficiently long 
interval of time (time averages) or a sufficiently large region 
(volume averages).

We shall only consider ergodic random functions:

𝐴 =
1

𝑉
 

𝑉

𝐴  𝑥, 𝑡 d3𝑥 =
1

𝑇
 
0

𝑇

𝐴  𝑥, 𝑡 d𝑡

Time averageVolume averageEnsemble average



2.2. Reynolds rules of averaging

Osborne Reynolds (1842–1912)





Turbulent flows are random

 Velocity  𝑣, pressure p, magnetic field 𝐵, density , etc.
are random functions of position  𝑥 and time 𝑡.

For a random function A(x), define:

 the average 𝐴 and fluctuations a:   𝐴 = 𝐴 + 𝑎, 𝑎 = 0,

 the variance 𝜎𝐴
2 = (𝐴 − 𝐴 )2 = 𝐴2 − 𝐴 2 = 𝑎2 (*),

 the standard deviation (or the root-mean-square value) 𝜎𝐴.

(*) For the Gaussian smoothing this is not true: 𝜎𝐴
2 ≠ 𝑎2 . See Germano, JFM, 

238, 325, 1992



2.3. Correlation and structure functions

The autocorrelation function of A(x):

a measure of relation between neighbouring fluctuations:

where hAi can depend on x.

The structure function of A(x): 

The cross-correlation function of two random functions, A1(x), A2(x):



Simulations of interstellar turbulence driven by supernova explosions 
(Gent et al., MNRAS, 2013)

The autocorrelation function of 
the Faraday depth

The structure function of the 
Faraday depth

Positive 
correlation

Anti-
correlation

No 
correlation

𝑙 = |𝑥1 − 𝑥2|



Structure functions can be calculated from 

observations or numerical results more 

accurately and with less computations than 

autocorrelation functions,

but autocorrelation functions have a more 

transparent intuitive meaning.



Correlation and structure functions are only useful when applied 
to random functions.

For a deterministic function 𝐹(𝑥), 

It often happens that an observed or computed variable is random at 
small scales but behaves deterministically at large scales. Then 

extending its correlation or structure function to those large scales is 
meaningless and can be misleading. 



A random function A(x) is called stationary if its mean value, 
variance and other statistical properties are independent of x.

2.4. Stationary random functions



 Stationary random functions are ergodic

because different realizations have identical statistical properties.  

 Statistical properties of a stationary random function can be 
obtained from its single realization.



 For a stationary random function, with 𝑙 = |𝑥1 − 𝑥2|:

 The correlation length: 

 The value of 𝐴(𝑥2) is predictable from 𝐴(𝑥1) when |𝑥1 − 𝑥2| ≪ 𝑙0
and unpredictable otherwise: 𝐴(𝑥1) and 𝐴(𝑥2) are uncorrelated if 
|𝑥1 − 𝑥2| ≫ 𝑙0.                            (The most probable weather forecast: 

tomorrow’s weather will be as today’s.)



Exercise

Show that, for a stationary random function, 

It is important to calculate the autocorrelation or structure function for sufficiently 
large values of the lag l.



2.5. Spectral representation

Power spectrum, or spectral density of 𝐴(𝑥):
the Fourier transform of the autocorrelation function:

In 3D, 𝑃(𝑘) is called the 3D spectrum,
the energy spectrum 𝐸(𝑘) is obtained by averaging over all
directions in the k-space.

In the isotropic case, 𝑃 𝑘 = 𝑃(𝑘),



2.6. Correlation versus statistical dependence

Correlations of random functions:

 Correlation, B > 0:           a1 large where a2 is large.

 Anticorrelation, B < 0:    a1 large where a2 is large (or A2 is small).

 No correlation, B = 0:    A1(x) and A2(x) are uncorrelated, and 
then 𝐴1𝐴2 = 𝐴1 𝐴2 .

Statistically independent random functions: 
their joint probability density is equal to the product of their 
respective probability densities, 𝑝 𝐴1, 𝐴2 = 𝑝1 𝐴1 𝑝2 𝐴2 .

Statistical independence: the values of one function do not affect the 
values of the other, and vice versa.



 Statistically independent functions are uncorrelated:

 The reverse is not always true: uncorrelated functions are not 
necessarily statistically independent.

Statistical independence: 𝑝 𝐴1, 𝐴2 = 𝑝1 𝐴1 𝑝2 𝐴2 .



Contours of joint probability density 𝑝(𝑢, 𝑣) for random variables 𝑢, 𝑣
that are:

anticorrelated uncorrelated             correlated

Uncorrelated functions are not necessarily statistically independent.

Contours of 𝑝(𝑢, 𝑣) for uncorrelated 𝑢, 𝑣
that tend to inhibit each other, and so are 
statistically dependent on each other: 
𝑢 and 𝑣 are seldom large simultaneously.



(some) Things to remember

 PDF = probability density function: 𝑝 𝑎 d𝑎 = the probability that 
the random variable 𝐴 takes a value in the interval 𝑎, 𝑎 + d𝑎 . 
Effectively, the histogram of 𝑎, normalized to the unit area, 

 −∞
∞

𝑝 𝑎 d𝑎 = 1.

 Gaussian smoothing (the convolution of a signal with a Gaussian 
kernel) does not satisfy the Reynolds rules of averaging.

 Statistically independent random functions are always 
uncorrelated (and statistically dependent ones are correlated), but 
uncorrelated functions can be statistically mutually dependent.

 A Gaussian random function [𝑎(𝑥) is a Gaussian random variable 
at any fixed 𝑥] is fully characterized by its (1) mean value, (2) 
standard deviation and (3) autocorrelation function.

 For a Gaussian random function, lack of correlation does imply 
statistical independence.
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Phenomenology of fluid turbulence



The Navier–Stokes equation,

known since 1823, probably contains all of turbulence (and much more),
but the nature of turbulence remains one of the most important
unsolved problems in physics.

Notation

 𝑣 = 𝑉 + 𝑢 = velocity,  𝑣 = 𝑉 = mean velocity,

𝜌 = density, 𝑝 = pressure, 𝜈 = kinematic viscosity,

𝐵 = 𝐵0 + 𝑏 = magnetic field, 𝐵 = 𝐵0 = mean magnetic field,



Consider a 1D velocity field,  𝑣 = (𝑣 𝑥 , 0, 0), neglect pressure, 𝑝 = 0:



3.1. Energy conservation







A flow represented by a single Fourier mode initially:

so the inertia force drives small-scale motions, i.e., transfers 
kinetic energy to small scales, from wavenumber k to 2k, then 
from 2k to 4k, etc., resulting in the energy cascade in the k-space 
towards small scales.

3.2. Spectral energy transfer



Flow complexity increases with the range of scales involved:

N = 1 N = 2 N = 3 N = 4

The flow becomes random (for all practical purposes, at least) as 
soon as the energy cascade produces a sufficiently wide range of 
scales. 



“. . . the water has eddying motions, one part of which is due to the 
principal current, the other to random and reverse motion.”

Leonardo da Vinci (1531)



Jonathan Swift (1667–1745):

So, nat’ralists observe, a flea

Hath smaller fleas that on him prey;

And these have smaller yet to bite ’em,

And so proceed ad infinitum.

Thus every poet, in his kind,

Is bit by him that comes behind.



Lewis Fry Richardson (1922):

Big whirls have little whirls, which feed on their velocity.

Little whirls have lesser whirls, and so on to viscosity.

1881–1953, 
born in Newcastle upon Tyne



A necessary condition for turbulence



Free shear layers become turbulent when Re > (3 − 5) × 103.

In the cool ISM, Re = 105 − 107 (Elmegreen & Scalo, 2004a),

hence expect the ISM to be turbulent, 

if only there are suitable forces to drive the turbulence.



3.1. Kolmogorov’s spectrum

Andrey Nikolaevich Kolmogorov (1903–1987) 



Consider an incompressible, homogeneous, isotropic turbulent flow,

and those scales where viscosity is still unimportant, so energy is 
conserved.
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k0 = energy injection scale
(= integral scale  correlation length),

kd = dissipation scale,

k0 < k < kd , the inertial range
(the flow is controlled by inertia forces).

Kinetic energy is injected at k = k0 and cascades to larger k, 
to dissipate (be converted into heat) at k = kd.







An important implication:

However small is viscosity, turbulent energy is converted into 
heat in a short tome of order of eddy turnover time.

Reducing viscosity does not change this but only makes the 
turbulent spectrum wider

(𝑘d becomes larger, 𝑙d = 2𝜋/𝑘d becomes smaller).
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Interstellar turbulence



log P(k)

log k (m1)

The Big Power Law in the sky:
3D electron density power 
spectrum in the ISM
(Armstrong et al., ApJ, 433, 209, 1995)



4.1. Energy content and energy sources

(Mac Low & Klessen 2004)





4.2. Turbulence driven by supernovae

Supernova remnants: expanding bubbles
of hot gas, magnetic fields and relativistic particles

Kepler’s SN 1604 (composite)    Tycho SN 1572 (X-rays)      Cas A (radio, 6 cm)

Wright et al., Astrophys. J. 518, 284, 1999



SN explosions:

• energy release ESN = 1051 erg per SN event,

• one type II SN per 50 yr near the Sun (frequency SN = 0.02 yr−1),

• occur at (quasi) random times and positions.

Supernova blast wave expands at 104 km s−1 (Mach 103 for first 300 yr),

then pressure equilibrium after 106 yr,

then a hot gas bubble of 100 pc in size.

Supernova remnants: expanding bubbles of hot gas

that drive motions in the ambient gas

when their expansion speed reduces to the speed of sound

(i.e., when their internal pressure becomes equal to the external 
pressure). 











Conclusions

 SNe are the most important source of interstellar turbulence;

 the correlation scale of the turbulence is l0 = 50–100 pc;

 the turbulent speed is comparable to the speed of sound in 
the ISM, 𝑣0 ≃ 10 km s−1, or can even exceed it. 

 Interstellar turbulence is transonic or supersonic, hence highly 
compressible, producing strong density fluctuations.



4.3. Observational signatures of interstellar turbulence







4.4. The role of turbulence in the iSM
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Alfvén wave turbulence





5.1. Isotropic Alfvén wave turbulence

An ensemble of Alfvén waves, randomness from their nonlinear 
interactions, incompressible.

Iroshnikov, Sov. Astron., 7, 566,1964; 
Kraichnan, Phys. Fluids, 8, 1385, 1965





(continued)



5.2. Anisotropic Alfvén wave turbulence



Combine the two equations to obtain the aspect ratio of the 
turbulent cells:
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Dynamos



Dynamo action: 

conversion of kinetic energy of a fluid or plasma 
flow into magnetic energy without any 

externally driven electric currents.



Mirror symmetry, vectors and pseudovectors

R. Feynman, Lecture Notes in Physics,
https://readingfeynman.org/2014/05/09/cpt-symmetry-ii/

When mirrored, a polar
vector changes its head, just as 
the whole space turns inside 
out.
An axial vector (pseudovector) 
changes in a very different way: 
it is usually reversed in respect 
to the geometry of the whole 
space.



 Angular velocity and magnetic field are similar in that both are 
pseudovectors

 To produce a magnetic field at a scale similar to the size of a 
physical system, the system must break its mirror symmetry.

 Conclusion: to produce a large-scale magnetic field, any system 
must be asymmetric with respect to mirror reflection.

 The most widespread asymmetry is due to rotation.

 If  𝑎 and 𝑏 are polar vectors,

  𝑎 + 𝑏 and  𝑣 =   𝑎 are polar vectors,       𝑎 ⋅ 𝑏 is a scalar, 

 but  𝑎 × 𝑏 and ∇ ×  𝑎 are axial (pseudo-)vectors                      

and  𝑎 × 𝑏 ⋅  𝑐 and  𝑎 ⋅ 𝛻 × 𝑏 are pseudoscalars.

 Pseudoscalars change sign under mirror reflection.



Helical flow  𝑣 is NOT mirror symmetric 

(when reflected, the right-hand screw becomes the left-hand one),



From Maxwell’s equations (for non-relativistic motions) and Ohm’s 
law:

6.1. The induction equation and dynamo action

 𝑣 = velocity field,

𝐵 = magnetic field,
 = magnetic diffusivity.

pseudo
vectorvector

vector

pseudovector

vector



Equivalently,

V

B (b)(a)

 𝑣



Suppose that 𝐵 is weak (𝐵2/8𝜋 ≪ 𝜌𝑣2/2). Then velocity 
field does not depend on magnetic field and the induction 
equation has solutions of the form 𝐵 = 𝐵ie

𝛾𝑡

𝐵i = 𝐵|𝑡=0, the initial (seed) magnetic field;
Re 𝛾 = the rate of growth (Re 𝛾 > 0) or decay (Re 𝛾 < 0);
Im 𝛾 = the oscillation frequency.

If  𝑣 = 0, 𝛾 ≃ −𝜂/𝐿2: Ohmic decay.  

Under what conditions would magnetic field grow, Re 𝛾 > 0?
Equivalently, under what conditions would the dynamo work?





Magnetic Reynolds numbers of some astrophysical objects



6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

𝐵 doubles after each cycle 𝑡0: 𝐵 ∝ 2𝑛 ∝ exp 𝛾𝑡 , 𝛾 = 𝑡0
−1ln 2.

Where in this cycle is the 
mirror symmetry broken?

AND HEREHERE



Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968



To be a dynamo, the flow must be three-dimensional:

2D flows cannot be a dynamo (it’s one of antidynamo theorems 

– see an excellent discussion of Chris Jones, Section 1.8, 

http://www1.maths.leeds.ac.uk/~cajones/LesHouches/chapter.pdf)

http://www1.maths.leeds.ac.uk/~cajones/LesHouches/chapter.pdf


6.3. The necessity of dynamos

 Can galactic magnetic fields be primordial? 

 Do they need to be maintained by any ongoing dynamo action?



Magnetic fields in a highly conducting turbulent medium 

“If Rm >> 1, magnetic field decays only slowly and so does not 
necessarily need to be continuously maintained” – TRUE?

Conclusion: any  (3D, MHD) magnetised, turbulent system must host a 
dynamo (unless the magnetic field is driven by external currents or 
decays).

Wrong, if the system is turbulent:
magnetic energy is transferred along the spectrum and then dissipates 
in a time of order 𝑙0/𝑣0,  and this time is much shorter than the Ohmic 
decay time 𝑙0

2/𝜂 when 𝑅m = 𝑙0𝑣0/𝜂 ≫ 1.

Even without turbulence, a sufficiently strong random magnetic field 
would drive random motions, and they will dissipate viscously to drain 
magnetic energy.



6.4. Classification of dynamos

Laminar dynamos: the velocity field is laminar (deterministic).      

Example: a swirling flow (as in a AGN jet): the Ponomarenko dynamo

 𝑣 𝐵

Dobler et al., PRE, 65, 036311, 2002



Turbulent dynamos: the velocity field is random

(not necessarily turbulent).

 Fluctuation (small-scale) dynamo: random flow generates 
random magnetic field (whose scale does not exceed the 
scale of the flow). 

 Mean-field (large-scale) dynamo: random flow generates a 
mean magnetic field (whose scale exceeds the scale of the 
flow).



Astrophysical objects: 𝑅m ≫ 1

 Fast dynamos: Re 𝛾 → const as 𝑅m → ∞.

 Slow dynamos: Re 𝛾 → 0 as 𝑅m → ∞.



Rm

𝑣0/𝑙0

The Ponomarenko dynamo The fluctuation dynamo

All known laminar dynamos are slow: main interest in fast dynamos 



6.4. The fluctuation dynamo

A random magnetic field grows if 
(1) the flow is random (e.g., turbulent) and 
(2) 𝑅m > 𝑅m,cr ≅ 102;

(3) a fast dynamo, 𝛾 ≃ 𝑣0/𝑙0.

The fluctuation dynamo produces magnetic filaments and ribbons:
 length (radius of curvature) of order 𝑙0,

 thickness of order 𝑙0𝑅m,cr
−1/2

≃ 𝑙0/10.



Haugen et al., PRE 2004

Schekochihin et al., ApJ 2004



Morphology of the magnetic structures

Wilkin et al., PRL, 2007: dynamo in an isotropic chaotic flow:



6.5. The mean-field dynamo

 Generates magnetic fields at a scale much larger than 𝑙0.

 A fast dynamo.

 Requires that the random flow has broken mirror symmetry.

 The mirror symmetry breaks spontaneously due to rotation and 
stratification.

Notation from now on:

𝐵 = large-scale magnetic field,
𝛽 ≃ 𝑙0𝑣0/3 =turbulent magnetic diffusivity,

𝑉 = large-scale velocity field.



(A) Broken mirror symmetry (helicity) of interstellar turbulence: 
a consequence  of angular momentum conservation in a rotating, 
stratified layer



(B) Differential rotation: 
B produced from Br

(C) Helical turbulence:
Br produced from B



6.5.1. Basic equations

B(t; r) = ~B(t; r; z)eimÁ ; ² =
h0

R0

¿ 1 :

Galactic discs 
are thin



B(t; r) = ~B(t; r; z)eimÁ ; ² =
h0

R0

¿ 1 ; G = r
d­

dr
:



Thin disc, axisymmetric solutions, α2ω-dynamo:









Dipolar symmetry                                                              Quadrupolar symmetry





6.5.2. Dynamo control parameters

NB! The Solar neighbourhood of the Milky Way, where these 
estimates apply, is not a typical galactic location.

Rotation ­ =
V0

r
;

V0 ' 200 km/s; r ' 10 kpc;

ionised gas scale height

h ' 0:5 kpc;

turbulent velocity v0 ' 10 km/s;

turbulent scale l0 ' 0:1 kpc:

®0 '
l20­

h
' 0:4 km/s;

¯ ' 1
3
l0v0 ' 1026 cm2=s;

R® =
®0h

¯
' 0:6

R! =
(r d­=dr)h2

¯
' ¡15

D = R®R! ' ¡
µ
3­h

v0

¶2

' ¡10



6.5.3. The “no-z” approximation (Subramanian & Mestel, 1993)

For solutions of a simple form, e.g., Br,  cos(z/2h),   

@

@z
' 1

h
;

@2

@z2
' ¡ 1

h2
:

Kinematic solutions: ~B = ~B0 exp(°t).

Thin disc, dimensional -dynamo equations:

@Br

@t
= ¡ @

@z
(®BÁ) + ¯

@2Br

@z2
;

@BÁ

@t
= GBr + ¯

@2BÁ

@z2
:



µ
° +

¯

h2

¶
B0r +

®

h
B0Á = 0;

¡GB0r +

µ
° +

¯

h2

¶
B0Á = 0:

Nontrivial solutions exist if
¯̄
¯̄ ° + ¯=h2 ®=h

¡G ° + ¯=h2

¯̄
¯̄ = 0;

i.e., ° ' ¯

h2
(¡1 +

p
¡D);

tan p =
Br

BÁ

' ¡
r

®

¡Gh = ¡

s
R®

jR!j
:

Magnetic ¯eld grows if D <» ¡1, with p ' ¡ arctan 1
4
' ¡15±:

NB! Magnetic pitch angle in nonlinear solutions is generally 
smaller, so the agreement between the linear solutions and 

observations may be a coincidence!



MHD simulations of the 
SN-driven ISM:
Gent, Shukurov, Sarson, 
Fletcher & Mantere, 
2013, MNRAS
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