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Format

1 Tuesday 20, Wednesday 21, Thursday 22 September
1 Lectures at 10:00-10:45, 11:00-11.45 and 12:00-12:45
 Lunch break at 12:45-13:30

[ Office hour at 13:30-14:30 (Room 1.04)

The audience are strongly encouraged to ask questions at any
time during the lectures and take advantage of the office hour.
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Introduction



Flows in nature: tendency to become disorderly (turbulent)

Turbulence behind a grid, 1 inch mesh size, the Reynolds number is 1500. The
instability of shear layers leads to turbulence downstream (Fig. 152, van Dyke 1982).

Highly recommended: https://youtu.be/1 _oyqlLOgwnl



Figure 1: Turbulence patterns revealed by the condensation wake of the Horns Rev 1 offshore
windfarm. Photographer Christian Steiness, (Credit: Vattenfall) . http://ict-aeolus.eu/about.html

https://youtu.be/NplrDarMDF8



https://youtu.be/NplrDarMDF8

Turbulent flows are

[ highly disorganized and yet contain structures on all scales,
[ velocity, pressure, etc., appear unpredictable in detail,

 and yet are reproducible in statistical sense (average values,
standard deviations, etc.).



Turbulence is
a) arandom flow of a liquid or gas,

b) where energy is transferred from large to small scales,

c) and dissipates there.

Each of a)—c) is an essential feature of turbulence




Turbulence requires a continuous supply of energy from

 instabilities of a laminar flow (e.g., shear instability, magneto-
rotational instability in accretion discs);

1 buoyancy, convection, etc.;

1 external forces, e.g., supernova explosions in the ISM;



Significance of turbulence

JAugments molecular transport and causes mixing within the gas
or fluid.

dTransfers energy from large scales to smaller scales where it
dissipates into heat leading to enhanced viscosity, heat transfer,
turbulent diffusion.

JGenerates coherent structures (flow structures, large-scale
magnetic fields via dynamo action).



2

Elements of random functions



Turbulent flows are random

= velocity v, pressure p, magnetic field §, density p, etc.
are random functions of position X and time t.

A(X) is called a random
function of the variable X if
A(X) is a random variable for
any fixed value X.

Realizations of a random
function of time, x(t)

z'(t)




2.1. Ensemble, volume and time averaging

1 Ensemble averaging: averaging over different realizations of the
random function.

[ Volume/time averaging: averaging of a single realization of a
random function over a region in space or time interval.

Ensemble averages appear in theory but are very difficult to
measure or compute as they require a very large number of
realizations to converge (often, millions of realizations).



ergodic = gpyov (work) + odo( (path)

Ergodic random functions:

statistical properties obtained by averaging a set of its realizations
(ensemble averages) are, with unit probability, equal to those
obtained by averaging a single realization for a sufficiently long
interval of time (time averages) or a sufficiently large region
(volume averages).

We shall only consider ergodic random functions:

ﬂj A%, t) d3x——f A(x,t) dt

Ensemble average / Volume average \




2.2. Reynolds rules of averaging

For any random variables « and v, a constant ¢ and any

useful averaging procedure:

Osborne Reynolds (1842-1912)



Warning:

Gaussian smoothing, often used in astronomy, does not satisfy (4),

and hence (i) is not true,



Turbulent flows are random

= Velocity U, pressure p, magnetic field §, density p, etc.
are random functions of position X and time t.

For a random function A(x), define:
[ the average (4) and fluctuationsa: A ={4)+a, {(a)=0,
A the variance o7 = ((4 — (4))?) = (4%) — (4)? = (a®)!",

d the standard deviation (or the root-mean-square value) o;,.

(*) For the Gaussian smoothing this is not true: o7 # (a?). See Germano, JFM,
238, 325, 1992



2.3. Correlation and structure functions

The autocorrelation function of A(x):
a measure of relation between neighbouring fluctuations:

Clxy,w2) = (a(r1)a(z2))
= ([A(z1) = (D][A(z2) — (A4)])
= (A(z1)A(22)) — (A4)7,
where (A) can depend on z.

Clr,z) =04, C(zy —x2) >0 for |z — z3| — 0.

The structure function of A(z):  D(z1,22) = ([a(z1) — a(x2)]?) .

The cross-correlation function of two random functions, A,(x), A,(x):

B(z1,22) = {a1(21)az(z2)) -
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Structure functions can be calculated from
observations or numerical results more
accurately and with less computations than
autocorrelation functions,

but autocorrelation functions have a more

transparent intuitive meaning.



Correlation and structure functions are only useful when applied
to random functions.

For a deterministic function F(x),
D(z1,22) = ([F(z)—F(z+1)*)

= [F(z) = F(z +1))?
[dF
dz

Q

2
(:c)] [*  for small [.

It often happens that an observed or computed variable is random at
small scales but behaves deterministically at large scales. Then
extending its correlation or structure function to those large scales is
meaningless and can be misleading.



2.4. Stationary random functions

A random function A(X) is called stationary if its mean value,
variance and other statistical properties are independent of X.



J Stationary random functions are ergodic
because different realizations have identical statistical properties.

] Statistical properties of a stationary random function can be
obtained from its single realization.



1 For a stationary random function, with [ = [x; — x5 |:
0(581,332):0([), B(SEl,Cl?Q):B(l),
D(z1,22) = D(I) = 2(a”®) — 2{a(x1)a(z2)) = 2 [05 — C(1)] .

1 o0
U The correlation length: lp = — C(l)dl.
04 JO

1 The value of A(x,) is predictable from A(x;) when |x; — x,| K [,
and unpredictable otherwise: A(x;) and A(x5) are uncorrelated if

| X1 — x| > 1. (The most probable weather forecast:
tomorrow’s weather will be as today’s.)



_ D(x1,x2) = ([a(z1) — a(x2)]?) .
Exercise

Show that, for a stationary random function,

D(z1,12) — 204 for |z1 — 25| = 0.
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It is important to calculate the autocorrelation or structure function for sufficiently
large values of the lag |.



2.5. Spectral representation

Power spectrum, or spectral density of A(x):
the Fourier transform of the autocorrelation function:

P(k) = /_ o; e~k C() dar C(z) = /_ Z &7 P(z) dk

In 3D, P(E) is called the 3D spectrum,
the energy spectrum E (k) is obtained by averaging over all
directions in the k-space.

In the isotropic case, P(I_c)) = P(k),

1 73 27
E(k)dk = — / sin 6 df / doP(k)k* dk,
4 /o 0

E(k) =Kk P(k).



2.6. Correlation versus statistical dependence

The cross-correlation function of A;(z) and As(z): B(x1,x2) = {a1(x1)az(xs)) .

Correlations of random functions:
4 Correlation, B > 0: a, large where a, is large.
 Anticorrelation, B <0: a, large where —a, is large (or A, is small).

 No correlation, B=0: A;(x) and A,(x) are uncorrelated, and
then (414;) = (A1 X4;,).

Statistically independent random functions:
their joint probability density is equal to the product of their
respective probability densities, p(4;,4,) = p;(41)p,(4,).

Statistical independence: the values of one function do not affect the
values of the other, and vice versa.



Statistical independence: p(A44,4,) = p1(41)p,(4,).

 Statistically independent functions are uncorrelated:

B(iUl,.“IJQ) = CL1 :L‘l a2 i) >

— / / alagp ai, CLQ) dCLl dag

— /_OO a1p1(ar)das /_OO asp2(asz) das
1) = (a9)

= 0 since (a =0.

J The reverse is not always true: uncorrelated functions are not
necessarily statistically independent.



Uncorrelated functions are not necessarily statistically independent.

Contours of joint probability density p(u, v) for random variables u, v
that are:
anticorrelated uncorrelated correlated

A
O -

Contours of p(u, v) for uncorrelated u, v

that tend to inhibit each other, and so are
statistically dependent on each other:

u and v are seldom large simultaneously.




(some) Things to remember

O PDF = probability density function: p(a) da = the probability that
the random variable A takes a value in the interval (a, a + da).
Effectively, the histogram of a, normalized to the unit area,

[Z p(a)da = 1.

(1 Gaussian smoothing (the convolution of a signal with a Gaussian
kernel) does not satisfy the Reynolds rules of averaging.

] Statistically independent random functions are always
uncorrelated (and statistically dependent ones are correlated), but
uncorrelated functions can be statistically mutually dependent.

(] A Gaussian random function [a(x) is a Gaussian random variable
at any fixed x] is fully characterized by its (1) mean value, (2)
standard deviation and (3) autocorrelation function.

 For a Gaussian random function, lack of correlation does imply
statistical independence.



3

Phenomenology of fluid turbulence



The Navier—Stokes equation,
ov 1
i (T- V)T = —;Vp + V27,

known since 1823, probably contains all of turbulence (and much more),
but the nature of turbulence remains one of the most important
unsolved problems in physics.

Notation

% =V + 1 = velocity, (B) = V = mean velocity,

p = density, p = pressure, v = kinematic viscosity,

B = §0 +b = magnetic field, (ﬁ) = §0 = mean magnetic field,
Vy = B _ Alfvén velocity.

Vamp






3.1. Energy conservation

oo

E= %/ |#]° dz = kinetic energy per unit mass.

— OO



£ %/ 7 da

.. Ov ov 0%v _
Multiply i + Vo =Va3 by v and integrate over x:

ov 50V %v
+ Vv — =V —

Yot Ox ox2’

o [~ > o3 > 9?2
1 v2dx+%/ idxzi// U—UdZC.

29t | s O e O
Flow confined to a finite domain: v — 0 and dv/dx — 0 for x — +o00:
oC 8’1)3 300
‘/;m%dﬂf — %U ‘_OOZO,
> 9% Ov |~ > ov\”° > ov\°
—d pr— S e e d — — D d .
/_OOU('?:C2 ‘ e e /_Oo (6’:{:) v ,/_Oo (8:17) *




0 v 020
1= 2 1 - — = -
28t/_00v d$+3/00 oz da V] U@xzdx°

> v’ > 9% < v\’

_ 1 2
The energy equation:

OE > /ov\ >
E——VS, S—/;OO(%> d$>0,

kinetic energy is conserved, £ = const, if viscosity vanishes, v = 0.

ov

vS is the dissipation rate of kinetic energy, related to the shear rate —

oxr

. e . ov
Dissipation rate vS can remain finite even if v — 0 because — o v~ /2,

ox



3.2. Spectral energy transfer

A flow represented by a single Fourier mode initially:

v =sinkx, (U-V)U = v%v = ksin(kz) cos(kx) o sin(2kzx) ,

so the inertia force drives small-scale motions, i.e., transfers
kinetic energy to small scales, from wavenumber k to 2k, then
from 2K to 4Kk, etc., resulting in the energy cascade in the k-space
towards small scales.




Flow complexity increases with the range of scales involved:

N-1
v = Z k;l/?’ sin(27 kpx) | ky, = 2"

n=0

The flow becomes random (for all practical purposes, at least) as
soon as the energy cascade produces a sufficiently wide range of
scales.



“...the water has eddying motions, one part of which is due to the
principal current, the other to random and reverse motion.”

Leonardo da Vinci (1531)

| _ , b USRS
L altia ’:w -’....' _..'ﬂc_-, CW “‘.’ !~. 0‘0

fM ":’:“ m“ i :;:N'?-an r\-mnrn}ﬂl‘ ? :“:nh .‘.‘.‘f:.:“:.r' _.v‘!
*’“‘ N ~ “ C e Fh“;’& *'uh Lo ALl i ‘ﬁ “ o-ﬁrﬂ" ‘” e
{ ke g et N R e LA L L L ﬁf‘ﬁ' *1.:"“ et b ,.s‘.
oifont moymire w4 u"‘-'fﬂ’ ‘N"“}"\'M pfrenny yUse /1
MRS VSPTRARRRT. T Lol OO TENTON, qu'm.“g_



Jonathan Swift (1667-1745):

So, nat’ralists observe, a flea

Hath smaller fleas that on him prey;
And these have smaller yet to bite ‘em,
And so proceed ad infinitum.

Thus every poet, in his kind,

Is bit by him that comes behind.




Lewis Fry Richardson (1922):
Big whirls have little whirls, which feed on their velocity.
Little whirls have lesser whirls, and so on to viscosity.

1881-1953,
born in Newcastle upon Tyne
\



A necessary condition for turbulence

7 1
% + (T V)T = —;vp+uv2«5,

The cascade extends over a broad range of k£ when
(T V)3] > [V,

that is, when kv? > vk?v. or

[
Re:—v>>1,
,

| = 27 /k is the wavelength (or scale) of the motion.

The Reynolds number Re must be large
for a large number of scales to be involved in the motion,
I.e., for a flow to be turbulent.



Free shear layers become turbulent when Re > (3 — 5) x 103,

In the cool ISM, Re = 10° — 107 (Elmegreen & Scalo, 2004a),
hence expect the ISM to be turbulent,
if only there are suitable forces to drive the turbulence.



3.1. Kolmogorov’s spectrum

Andrey Nikolaevich Kolmogorov (1903-1987)



Consider an incompressible, homogeneous, isotropic turbulent flow,

and those scales where viscosity is still unimportant, so energy is
conserved.

Spectral description of the turbulent energy cascade:
o £=1v7= / E(k) dk ,specific kinetic energy, [£] = cm?/s” .
0

dk _
L

spectral energy density (or kinetic energy spectrum,
or specific kinetic energy per unit interval of In k).

o E(k)dk = Lv*(k) v? (k) d(In k),

b=

o vy = V2, the r.m.s. velocity.

o v(k)=+/2kE(k), velocity at a wavenumber £,
[E(k)] = cm?/s? .



Kinetic energy is conserved,
hence all the energy arriving to k is transferred to a larger k:

energy transfer rate along the spectrum is independent of k,

2
ve(k
" _ .
-

€ = const, energy transfer rate, T = time scale of the energy transfer.
[ _ 1

T ~ — = eddy turnover time, at a scale [, 7~ .
v kv(k)

(k) o3(k)
r(k) ~ 1/[ko(k)]

resulting in Kolmogorov's spectrum

= kv (k) =¢,

v(k) = c1/3=1/3  1/3 . E(k) = k—l,UZ(k) _ 62/3k:_5/3,

up to a dimensionless constant of order unity.



1
kv(k)
2 2
vi(k) _ v=(ko) 3
Energy transfer rate: ¢ = = = ko v
T(k)  7(ko) ’
A InE(K)
K, = energy injection scale
(= integral scale = correlation length),
ky = dissipation scale,
K, <k<Ky, the inertial range
(the flow is controlled by inertia forces).
: : >
K, kg Ink

Kinetic energy is injected at kK = k, and cascades to larger K,
to dissipate (be converted into heat) at k = k.



The turbulent cascade terminates at &k = kq such that

(T - V)T ~ [vV37], or kqu(kq)? ~ vk2v(kq),

or U(kd) — Re]k:kd ~ 1.
vkg
—1/3
Then Yo Fa/ko)™ "y [} p Res/al].
I/kd

The inertial range becomes broader with Re.

However, small is v, motions eventually decay in a time

lo
T =X —
Vo

the turnover time of the largest eddy.

This is why turbulence requires continuous supply of energy.



The structure function for Kolmogorov's spectrum:

v(k) = el/3k~1/3 or v(l) = (el)1/3.

Then
D(1) = ([6(F) — 0(Z + )]?) = (*(1)) = (e))*?,  la< 1<y,

lOZZW/kQ, ld:27l'/kd.



An important implication:

However small is viscosity, turbulent energy is converted into
heat in a short tome of order of eddy turnover time.

Reducing viscosity does not change this but only makes the
turbulent spectrum wider

(kq becomes larger, [ = 21t /k 4 becomes smaller).



A

Interstellar turbulence



70

The Big Power Law in the sky:
3D electron density power

spectrum in the ISM
(Armstrong et al., ApJ, 433, 209, 1995)
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4.1. Energy content and energy sources

Turbulent kinetic energy density:

Magnetic energy density: M = —2 ~

Energy dissipation rate per unit mass: € ~

(Mac Low & Klessen 2004)

, erg ( n ) Vg :
cm3 \1cm—3 10 kms™*
b2
E.
ST
3
Y% ~ 3 x 10
Lo

v

and per unit volume: ey ~ p—2 ~ 5 x 1072 ergecm ™ > s

lo

Energy dissipation time = largest eddy turnover time:

E

gV

lo
Vo

=107 yr (

lo
100 pc

)(

vo

10kms—1



Energy sources of the interstellar turbulence

3

—1

Driving mechanism ey, ergem S s
Supernova explosions 3 x 1026
Stellar winds 3 x 10727
Protostellar outflows 2 x 10728
Stellar ionizing radiation 5x 1072
Galactic spiral shocks 4 x 1072
Magneto-rotational instability 3 x 102"
H1I regions 3 x 10739




4.2. Turbulence driven by supernovae

Supernova remnants: expanding bubbles
of hot gas, magnetic fields and relativistic particles

Kepler’s SN 1604 (composite) Tycho SN 1572 (X-rays) Cas A (radio, A6 cm)

TEwrwery ¥

SNR 1572 (Tycho)

Wright et al., Astrophys. J. 518, 284, 1999



SN explosions:

e energy release Egy = 10°! erg per SN event,

e one type Il SN per 50 yr near the Sun (frequency vgy = 0.02 yr1),
e occur at (quasi) random times and positions.

Supernova blast wave expands at 104 km s (Mach 103 for first 300 yr),
then pressure equilibrium after 10° yr,
then a hot gas bubble of 100 pc in size.

Supernova remnants: expanding bubbles of hot gas
that drive motions in the ambient gas
when their expansion speed reduces to the speed of sound

(i.e., when their internal pressure becomes equal to the external
pressure).



Total SN energy supply rate:

Esn vsN
V

Y = 2w R.h, = volume of the star-forming Galactic disc,
R, = 16kpc, h, = 100 pc.

_ _3 —1
~ 2 x 10 25ergcm s

ESN —

The required energy supply:

3

gy p% ~5x 107%" ergcm ™" s '

,

~ 3% of the energy supplied by the SNe is sufficient
to drive the interstellar turbulence.



Turbulent scale =
SNR radius at pressure balance with the ambient medium

Pressure balance: the momentum-conserving (snowplough) phase.

The beginning of the snowplough phase:
(Dyson & Williams, The Physics of the Interstellar Medium, |IOP, 1997, §7.3.4)

o age, top = 3.9 x 10*yr,
e SNR radius, rg = 24 pc,

1

,

e expansion velocity, 7g = 250 km s

e dense, cool shell of interstellar gas swept up by the SNR.

SNR expansion law in the snowplough phase:

. 1/4 . —3/4
fr—ro[1+4—0(t—to)] : T =70 [1+4—0(t—t0)] :
T 0



. 1/4 . —3/4
T =170 1—|—4T—0(t—t0)] , T =170 1+4T_0(t_t0)] '
0 0

r = lp when » = cooung = 10 km s

ff‘ C d _4/3
o (A

Conclusion:
the integral scale of the interstellar turbulence is [ = 50-100 pc

the SNR age when it disintegrates is ¢ /ty ~ 44.



Efficiency of SN energy conversion
(Dyson & Williams, The Physics of the Interstellar Medium, 10P, 1997, §7.3.6)

. 1/4 : —3/4
r =1 1—|—4T—0(t—t0) , r =170 1—|—4T—O(t—t0)
0 0
4T 5 .4

Kinetic energy of the SNR shell: Egonl = Mahen 72 = ?por r
Mgnen = interstellar gas mass (density py) swept up by the SNR.

)1/4 1.3

, T (Zrof“ot_?’)l/4

t > 1o - I~ (47“8)7;075

Efficiency of energy conversion:

3/4
Ene _ t !
hell T 154 5/4-3/4 1 ( 0) ~ 8%, — =44,
EsN 3v2EsN t Lo




Conclusions

J SNe are the most important source of interstellar turbulence;
4 the correlation scale of the turbulence is |, = 50-100 pc;

 the turbulent speed is comparable to the speed of sound in
the ISM, vy =~ 10 km s~1 or can even exceed it.

 Interstellar turbulence is transonic or supersonic, hence highly
compressible, producing strong density fluctuations.



4.3. Observational signatures of interstellar turbulence



e Spectral line broadening by Doppler shifts:

2kpT 22
B a 0

M C2 3¢?
——

thermal turbulent

AVD =1

vy = central line frequency,

kg = Boltzmann’s constant,

m, = the emitting atom’s mass,
c = speed of light.

Velocity dispersion of interstellar gas scales with the region size [
(Larson, MNRAS, 186, 479, 1979; 194, 809, 1981)

[

3
—) ; G =0.4:k10.1
I pc

6v (kms™!) ~ 1.1 (
consistent with Kolmogorov’s law v(1) oc 1'/2.

However, the interpretation of the scaling is controversial
(e.g., Mac Low & Klessen 2004)

More recently: various statistical studies of velocity and density
fluctuations, especially in molecular clouds
(Elmegreen & Scalo 2004a)



e Radio wave scattering at electron density fluctuations

—  scintillation, pulse broadening of pulsar emission

Density fluctuations in weakly compressible turbulence:
o ov
(n) B UAQ

density fluctuations have the same power spectrum as v.

?

Significant effects at small scales, [ < 10" cm.



4.4. The role of turbulence in the iSM

e Cloudy structure of the interstellar gas produced by compression

Standard picture:

Field, Goldsmith & Habing (1969): cold (T ~ 10>°K, n ~ 10 cm—?)
and warm (7" ~ 10" K, n ~ 0.1 cm~?) phases in pressure
balance.

McKee & Ostriker (1977): cold (T ~ 10°K, n ~ 10cm™?), warm
(T'~10*K, n~0.1cm™?) and hot (T~ 10°K, n ~ 1073 cm™?)
phases in pressure balance;
hot phase created by SNe: filling factor

The effect of supersonic turbulence on the ISM: new insights

- Filamentary structure of the cold gas results from shocks.

- H 1 clouds are formed by compression rather than by thermal &
gravitational instabilities = implications for star formation criteria.



e Control of star formation (Mac Low & Klessen 2004)

e Mixing of interstellar gas
— small (5—-20%) metallicity variations in stars and interstellar gas
(Scalo & Elmegreen 2004b)

e Turbulent pressure

V0 2 Comd = P2 Ppem = thicker gas layer.

e Generation of magnetic fields

— the fluctuation dynamo
— random, filamentary magnetic fields;

— the large-scale dynamo
— magnetic field ordered at the galactic scale
+ volume-filling random magnetic field



5

Alfvén wave turbulence



Interstellar medium is magnetized, with energy density of magnetic
field comparable to the kinetic energy density of turbulence,

1
%,U(Q) ~ —b% ~ 10717 erg em 0 = 1eVem ®.
T
Furthermore, ,
v
Rm > Re>1 ; Rm —
n

R,, = magnetic Reynolds number,

n = magnetic diffusivity, [n] = cm?s™!.

Thus, interstellar turbulence is a magnetohydrodynamic turbulence

(likewise, for the solar/stellar wind turbulence, turbulence in radio galaxies and quasars, etc.)



5.1. Isotropic Alfvén wave turbulence

An ensemble of Alfvén waves, randomness from their nonlinear
interactions, incompressible.

Governing equations: The Navier-Stokes equation  and the
iInduction equation for magnetic field:

a]§ — — —
— = V x (V x B) + nV°‘B
ot | - | o
advection, stretching, compression diffusion, decay

A convenient variable, Alfvén speed at a scale [ = 27 /k:
b(k)
Virp

UA(/C) —

Kinetic energy density: £ = %pv”

Magnetic energy density: M = %p’l}i Iroshnikov, Sov. Astron., 7, 566,1964;
Kraichnan, Phys. Fluids, 8, 1385, 1965



Kolmogorov turbulence versus isotropic Alfvén wave turbulence

Fluid turbulence

Alfvén wave MHD turbulence

Specific kinetic energy:

1.2
5—5710

Specific magnetic energy:
M = J04]

Kinematic viscosity v

Magnetic viscosity n

Kinetic energy spectrum:
Ek) = %k‘va(k)

Magnetic energy spectrum:
M (k) = 3k~ vi(k)

Turbulent eddy

Alfvén wave riding on magnetic field of
the largest scale

Constant spectral energy flux:

Constant spectral energy flux:

(k) _ v(k) _ (k) _
(k) (k) Ta(k)
Spectral energy transfer rate: | Spectral energy transfer rate:
k)
k) = ) — () T
) = o) Tnlk) =T a5
1
TA(k> — m )

interaction time of Alfvén waves.
Va>wvg=7alk)<r(k), weak interaction



Kolmogorov turbulence versus isotropic Alfvén wave turbulence

Kolmogorov’s spectrum:
E(k) = e2/3k=5/3

Iroshnikov—Kraichnan spectrum:

v(k) = va(k) = (vape) B,

E('@ - M(k’) — (UA(')E)l/Qk_g/Q ;
equipartition between kinetic and mag-
netic energies,

as in a single Alfvén wave.

Dissipation scale:
(k) = vk = kq=kyRe¥*

Dissipation scale:
, RN
Tm(kdm) :nkdn1:>kdn1 — kORm/g ( ) .
VAo
kq < kqgm I R, > Re

(magnetic spectrum extends to smaller scales than ve-

locity spectrum).




5.2. Anisotropic Alfvén wave turbulence

(Sridhar & Goldreich, ApJ, 432, 612, 1994;
Goldreich & Sridhar, ApJ, 438, 763, 1995)

Magnetic field at larger scales introduces anisotropy:
motion along by is free, but that across by is hindered
—  slow variations along the field are allowed,

but the wavelength can be shorter across the field:

ko> ky, 1 (]|) = perpendicular (parallel) to b,

—  turbulent cells are elongated along by

=



Balance of energy transfer rates across and along b:

kJ_UA(kJ_) =~ ]f’UAO
) e g ——
1/7(k ) | wave frequency

Spectral energy cascade mainly occurs in the k| -plane, with

i (ky)

o T(kj_)
Combine the two equations to obtain the aspect ratio of the
turbulent cells:

— kv (kL) .

UVAD ;2/3 _ 41/3,;2/3 ko
) =~ 1/3l ~ I T ~ (lok )",

with

= the spectral anisotropy increases with & .



The resulting energy spectrum in the inertial range:

" 3\ 2/3
E(k) = &Pk = (;‘0) kP
0

E(kH) _ 53/2@A65/2k_5/2.



6

Dynamos



Dynamo action:

conversion of kinetic energy of a fluid or plasma
flow into magnetic energy without any
externally driven electric currents.




Mirror symmetry, vectors and pseudovectors

@/o o\ﬁj @ ] @ .

Fig. 52-2. A step in space and its
mirror image. Fig. 52-3. A rotating wheel and its
mirror image. Note that the angular

velocity ‘“vector” is not reversed in
When mirrored, a polar direction.

vector changes its head, just as ==
the whole space turns inside
out.

An axial vector (pseudovector) 2 | i
g . a ' a'

changes in a very different way: 5 3

it is usually reversed in respect

to the geometry Of the whole . Fig. 52-4. A magnet and its mirror

space. image.

el

F 1Y
A",
4

w
=

R. Feynman, Lecture Notes in Physics,
https://readingfeynman.org/2014/05/09/cpt-symmetry-ii/



 Angular velocity and magnetic field are similar in that both are
pseudovectors

[ To produce a magnetic field at a scale similar to the size of a
physical system, the system must break its mirror symmetry.

[ Conclusion: to produce a large-scale magnetic field, any system
must be asymmetric with respect to mirror reflection.

1 The most widespread asymmetry is due to rotation.

A If a and b are polar vectors,

* g+ band v = a arepolarvectors, a-b isascalar,

* butd X b and V X a are axial (pseudo-)vectors
anda X b-canda -V X b are pseudoscalars.

= Pseudoscalars change sign under mirror reflection.



Helical flow ¥ is NOT mirror symmetric
(when reflected, the right-hand screw becomes the left-hand one),

7V x T #£0.




6.1. The induction equation and dynamo action

From Maxwell’s equations (for non-relativistic motions) and Ohm’s

law:

9B
= =V X fuxB +nV2B, V-B=0.

vector vector

= velocity field,
= magnetic field,
magnetic diffusivity.

I <y



OB , q
EZVX(’EXB)—FT]VzB, V -

o]l
|
-

Equivalently,

OB L B}
Ewt(ﬁ-V)B:(B-V)ﬁJranB, V-

Y o

ol
|
-

advection stretching

(a) B A1 (b)

7\

=
vV —>

=




%—?:Vx(ﬁxé)—l—nVQE.

Suppose that B is weak (B2 /81 < pv?/2). Then velocity
field does not depend on magnetic field and the induction
equation has solutions of the form B = Bje!*

B; = B|;=¢, the initial (seed) magnetic field;
Re y = the rate of growth (Re y > 0) or decay (Re y < 0);
Im y = the oscillation frequency.

If v =0, y = —n/L?: Ohmic decay.

Under what conditions would magnetic field grow, Rey > 0?
Equivalently, under what conditions would the dynamo work?



'V x (¢ x B)| > n|V2B|.

vB ol
L = e

L is the scale of the magnetic field.

vl
Ry,=—>1,
n

R, is the magnetic Reynolds number.

This is a necessary condition for the dynamo action:
magnetic field can only decay if R, < 1.

A necessary condition: further conditions need to be met by
a successful dynamo.



Magnetic Reynolds numbers of some astrophysical objects

trms [ems™!] L [cm] Rin
Solar CZ (upper part) 100 103 109
Solar CZ (lower part) 10% 1010 107
Protostellar discs 10° 1012 10
CV discs and similar 10° 107 10%
AGN discs 10° 107 10!
Galaxy 100 1020 (1018)
Galaxy clusters 108 1023 (10%9)

A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1—209



6.2. Stretch-Twist-Fold: a conceptual dynamo
(Zeldovich’s rope dynamo)

(@ s B | (b)

Where in this cycle is the
mirror symmetry broken?

ZB/| HERE ANDHERE
i
I

B doubles after each cycle ty: B o« 2™ « exp(yt), y = t;ln2.

1SIML

S24+8/2

(d)



B TR =




To be a dynamo, the flow must be three-dimensional:

2D flows cannot be a dynamo (it’s one of antidynamo theorems

— see an excellent discussion of Chris Jones, Section 1.8,

http://www1.maths.leeds.ac.uk/~cajones/LesHouches/chapter.pdf)



http://www1.maths.leeds.ac.uk/~cajones/LesHouches/chapter.pdf

6.3. The necessity of dynamos

[ Can galactic magnetic fields be primordial?

1 Do they need to be maintained by any ongoing dynamo action?



Magnetic fields in a highly conducting turbulent medium

“If R, >> 1, magnetic field decays only slowly and so does not
necessarily need to be continuously maintained” — TRUE?

Wrong, if the system is turbulent:

magnetic energy is transferred along the spectrum and then dissipates
in a time of order [, /vy, and this time is much shorter than the Ohmic
decay time 5/ when Ry = lyvo /1 > 1.

Even without turbulence, a sufficiently strong random magnetic field
would drive random motions, and they will dissipate viscously to drain
magnetic energy.

Conclusion: any (3D, MHD) magnetised, turbulent system must host a
dynamo (unless the magnetic field is driven by external currents or
decays).




6.4. Classification of dynamos

JLaminar dynamos: the velocity field is laminar (deterministic).

Example: a swirling flow (as in a AGN jet): the Ponomarenko dynamo

A

Dobler et al., PRE, 65, 036311, 2002



JTurbulent dynamos: the velocity field is random
(not necessarily turbulent).

= Fluctuation (small-scale) dynamo: random flow generates
random magnetic field (whose scale does not exceed the
scale of the flow).

= Mean-field (large-scale) dynamo: random flow generates a
mean magnetic field (whose scale exceeds the scale of the
flow).



YR,/U

Astrophysical objects: Ry > 1

[ Fast dynamos: Re y = const as Ry — 0.

 Slow dynamos: Re y = 0 as Ry — ©o.

0.0101

Vv

The Ponomarenko dynamo The fluctuation dynamo

All known laminar dynamos are slow: main interest in fast dynamos



6.4. The fluctuation dynamo

A random magnetic field grows if

(1) the flow is random (e.g., turbulent) and
(2) Rm > Rm,cr = 10

(3) afastdynamo, y = vy/l,.

The fluctuation dynamo produces magnetic filaments and ribbons:
» |ength (radius of curvature) of order [,

" thickness of order lORr_nl'ézr ~ [4/10.



Schekochihin et al., ApJ 2004



Morphology of the magnetic structures

Wilkin et al., PRL, 2007: dynamo in an isotropic chaotic flow:

N
U = Z [C_”n X ]Z,n cos(En :E') —+ ﬁn X En Sin(En . :1_3’)} , E(kn) X k,,:s
n=1

Magnetic structures:
thickness: 1 o lgRm2 17
width: Iy o< lg R0

length: I3 ~ [

R, > 1: filaments, [; thick, [y long

Subramanian, PRL, 1999:

steady state: Ry, of = Ruer = 107



6.5. The mean-field dynamo

] Generates magnetic fields at a scale much larger than [,.

A fast dynamo.

 Requires that the random flow has broken mirror symmetry.

1 The mirror symmetry breaks spontaneously due to rotation and
stratification.

Notation from now on:

B = large-scale magnetic field,
f = lyve/3 =turbulent magnetic diffusivity,

V= large-scale velocity field.



(A) Broken mirror symmetry (helicity) of interstellar turbulence:
a consequence of angular momentum conservation in a rotating,
stratified layer

The helical fraction of the turbulent speed:

. L 120
o = —%To 7-Vx)o~ L~ km /s (F. Krause, 1967).



(B) Differential rotation: (C) Helical turbulence:
B, produced from B, B, produced from B,

€




6.5.1. Basic equations

%—?:Vx (aB+V x B)+ V2B
N imao ho
B(t,r) = B(t,r,z)e"™? | e=—<1.
Ry

Galactic discs

are thin
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Thin disc, axisymmetric solutions, a?w-dynamo:

0B, 0 _0°B,
ot _E(@B‘ﬁ) TP 0z2
B, 0 0° By
5 = GB, + @(QB’”) + 3 9.2
0B. _ OB
o 7 022
G =r d/dr

Equation for B_ splits from the system.

B. is supported through B, and B via d/or



Dimensionless variables

SN 0 1 J P t . O 3 9
° = h 2  h OF ' - h?/B N R O
5 a(2)
Qg

OB, 2 0° B, aoh

~ = —B S B . BQ “ore
o1 2 p5(@Be) T 5 5
B, o, 9?2 B,
‘ : — R B -+ RQ ( B ) . @ . Rw,

ot 9z @




Drop~at dimensionless variables:

OB, 5 OB,
" — _R,—(aBy) +——
or g\ P TH5

B,— B, via a-effect

JB;
ot

), . 0'B,
RL:.:B.*' + Ruf—(“Br) +( - .

_ 0z ) 0z*

B,— B, via a-effect

B,—B,_ via differential rotation




ow-Dynamo: |R | >> R

0B, 9, - 9’B,

ot — _RQE(O)BC))_'_ 522

0B 0° By

5 R, B, + 5.7 -

Introduce new variable B, = R, B/ and drop the dash:

0B, 2, 0°B,
ot ()~(aB,,)+ da? ’
0B, &’B;
o ot e

where D = R, R, is the dynamo number.




Boundary conditions

Br =1 — BH =1 =0 (vacuum boundary conditions)
. = — = () (quadrupole)
)z ::(] d: —
b = B, ._g="U (dipole)
¢

Dlp\omngnme\%

T ( ______ T N e i



6.5.2. Dynamo control parameters

NB! The Solar neighbourhood of the Milky Way, where these
estimates apply, is not a typical galactic location.

Vo

r
Vo =~ 200km /s, r ~ 10 kpc,

Rotation ) =

lonised gas scale height
h ~ 0.5 kpc,

turbulent velocity vy ~ 10 km/s,

turbulent scale [y ~ 0.1 kpc.

12
Qg OT ~ (0.4 km/s,

B~ lyvg ~ 1026 cm? /s,

Ra:@20.6




6.5.3. The “no-z” approximation (Subramanian & Mestel, 1993)

Thin disc, dimensional ao®m-dynamo equations:

0B, 0, 0° B,
9B, 9B,
ot GB 40 0z2

For solutions of a simple form, e.g., B, ; oc cos(nz/2h),

0> 1

022~ h?

0

0z

1
~

Kinematic solutions: B = By exp(7t).



e
(74' }?2) By, + EBqu = 0,

Nontrivial solutions exist if

| v + B/h? a/h _ 0
2 — Y%
-G v+ B/h
ﬁ N
e 72}7(—1—1—\/—D),
¢ BT (8 Ra
anp = — ] —— = — :
P=B,~ "\ =cn R,
Magnetic field grows if D < —1, with p ~ — arctan% ~ —15°.

NB! Magnetic pitch angle in nonlinear solutions is generally
smaller, so the agreement between the linear solutions and
observations may be a coincidence!
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