IMPRS - BBL

Numerical methods

Lecture 4

Michael Marks

Day 1:
Day 2.
Day 3.
Day 4.
Day o:
Day 6:

Topics:

_Inear algebraic equations

nter- and Extrapolation

ntegration

Random numbers and distribution functions
Root finding, Minimization and Maximization

Differentiation

Shuffling procedure

Break-up of sequential correlation

OUTPUT

RAN

Numerical Recipes

Random deviates

Exponential

#include <math.h>

float expdev(long *idum)
Returns an exponentially distributed, positive, random deviate of unit mean, using
ranl (idum) as the source of uniform deviates.

{
float rani(long *idum); - Random number generator in Numerical Recipes
float dum;
do
dum=rani (idum) ;
while (dum == 0.0);
return -log(dum) ;
¥

Numerical Recipes

Transformation method

UNITOIM @ o o o o o o o o o o
deviate in

X

Y

transformed
deviate out
Numerical Recipes

Random deviates
Gauss

#include <math.h>

float gasdev(long *idum)

Returns a normally distributed deviate with zero mean and unit variance, using ranl (idum)
as the source of uniform deviates.

{
float ranl(long #*idum);
static int iset=0;
static float gset;
float fac,rsq,vl,v2,
if (#idum < 0) iset=0: Reinitialize.
if (iset == 0) { We don't have an extra deviate handy, so
do {
v1=2.0+*ranl (idum)-1.0; pick two uniform numbers in the square ex-
v2=2.0%ranl (idum)-1.0; tending from -1 to +1 in each direction,
rsq=visvi+v2+v2; see if they are in the unit circle,
} while (rsq >= 1.0 || rsq == 0.0); and if they are not, try again.
fac=sgqrt(-2.0+log(rsql/r=sq);
Now make the Box-Muller transformation to get two normal deviates. Return one and
save the other for next time.
gset=vi*fac;
iset=1; Set flag.
return v2#fac;
} else { We have an extra deviate handy,
iset=0; so unset the flag,
return gset,; and return it.
}
}

Numerical Recipes

Rejection method

Continous distribution

A

first random

deviatein —

Numerical Recipes

Ig f(x)dx —

reject xp

accept xp

X0

;_ second random
deviate in

Rejection method

binned distribution

Numerical Recipes

Exercise

Randomly draw 1000 masses m in the range [0.5:150] M from a

sun

single power-law distributed stellar mass function of the form:

k X m-2.35

where k Is a normalization constant and -2.35 is the ,Salpeter
value“. Check If your so drawn random numbers are indeed
distributed as expected, by binning the masses into equal-size bins
In a log(number) vs. m diagram.

Steps:
1) Calculate the normalization constant k from the requirement

that its probability distribution shall be normalized to unity
within the given mass-range (by hand!).

2) Find the inverse of the primitive integral to draw masses from
this distribution (by hand!). Using a uniform deviate provided by
the standard random number generator of your preferred
programming language.

Solution

1) calculate k:

Integral "k (m’) **]dm' =1
=>k =1.35/(0.5"% - 150*%)

2) First determine, then invert the primitive integral:

X = Integral "[k (m)**] dm’' =k [m™* - 0.5">]/-1.35
(X 1s uniform random deviate)

=>m = [(_135 X / k) + 0.5-1.35]-1.0/1.35

Solution

3) C code:
#define N 1000
int main(void) {

float k,X;
float m[N];

srand(time_t(NULL)); // initialize random number generator with time as seed
k=1.35/(pow(0.5,-1.35) — pow(150,-1.35)); // normalization constant

for(i=0;i<N;i++) {
do {
X =rand();
mli] = pow((-1.35 X / k) + 0.5%%),(-1.0/1.35));
} while(m[i]<0.5 || m[i]>150);
}

// then do something with m

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

