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Topics:
Day 1: Linear algebraic equations
Day 2: Inter- and Extrapolation
Day 3: Integration
Day 4: Random numbers and distribution functions
Day 5: Root finding, Minimization and Maximization
Day 6: Differentiation



  

Shuffling procedure
Break-up of sequential correlation
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Random deviates
Exponential

Numerical Recipes

Random number generator in Numerical Recipes



  

Transformation method
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Random deviates
Gauss
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Rejection method
Continous distribution
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Rejection method
binned distribution

Numerical Recipes



  

Exercise
Randomly draw 1000 masses m in the range [0.5:150] M

sun
 from a 

single power-law distributed stellar mass function of the form:

k x m-2.35

where k is a normalization constant and -2.35 is the „Salpeter 
value“. Check if your so drawn random numbers are indeed 
distributed as expected, by binning the masses into equal-size bins 
in a log(number) vs. m diagram.

Steps:
1) Calculate the normalization constant k from the requirement

that its probability distribution shall be normalized to unity 
within the given mass-range (by hand!).

2) Find the inverse of the primitive integral to draw masses from
this distribution (by hand!). Using a uniform deviate provided by
the standard random number generator of your preferred
programming language.



  

Solution

1) calculate k:

Integral
0.5

150[k (m') -2.35] dm' = 1

=> k = 1.35 / (0.5-1.35  - 150-1.35)

2) First determine, then invert the primitive integral:

X = Integral
0.5

m[k (m')-2.35] dm' = k [m-1.35 – 0.5-1.35] / -1.35

(X is uniform random deviate)

=> m = [ (-1.35 X / k) + 0.5-1.35 ]-1.0/1.35



  

Solution
3) C code:

#define N 1000

int main(void) {

float k,X;
float m[N];

srand(time_t(NULL)); // initialize random number generator with time as seed

k = 1.35 / (pow(0.5,-1.35) – pow(150,-1.35)); // normalization constant

for(i=0;i<N;i++) {
do {

X = rand();
m[i] = pow((-1.35 X / k) + 0.5-1.35),(-1.0/1.35));

} while(m[i]<0.5 || m[i]>150);
}

// then do something with m

}
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