

IMPRS - BBL

Numerical methods

Lecture 4

Michael Marks

Topics:
Day 1: Linear algebraic equations
Day 2: Inter- and Extrapolation
Day 3: Integration
Day 4: Random numbers and distribution functions
Day 5: Root finding, Minimization and Maximization
Day 6: Differentiation

Shuffling procedure
Break-up of sequential correlation

Numerical Recipes

Random deviates
Exponential

Numerical Recipes

Random number generator in Numerical Recipes

Transformation method

Numerical Recipes

Random deviates
Gauss

Numerical Recipes

Rejection method
Continous distribution

Numerical Recipes

Rejection method
binned distribution

Numerical Recipes

Exercise
Randomly draw 1000 masses m in the range [0.5:150] M

sun
 from a

single power-law distributed stellar mass function of the form:

k x m-2.35

where k is a normalization constant and -2.35 is the „Salpeter
value“. Check if your so drawn random numbers are indeed
distributed as expected, by binning the masses into equal-size bins
in a log(number) vs. m diagram.

Steps:
1) Calculate the normalization constant k from the requirement

that its probability distribution shall be normalized to unity
within the given mass-range (by hand!).

2) Find the inverse of the primitive integral to draw masses from
this distribution (by hand!). Using a uniform deviate provided by
the standard random number generator of your preferred
programming language.

Solution

1) calculate k:

Integral
0.5

150[k (m') -2.35] dm' = 1

=> k = 1.35 / (0.5-1.35 - 150-1.35)

2) First determine, then invert the primitive integral:

X = Integral
0.5

m[k (m')-2.35] dm' = k [m-1.35 – 0.5-1.35] / -1.35

(X is uniform random deviate)

=> m = [(-1.35 X / k) + 0.5-1.35]-1.0/1.35

Solution
3) C code:

#define N 1000

int main(void) {

float k,X;
float m[N];

srand(time_t(NULL)); // initialize random number generator with time as seed

k = 1.35 / (pow(0.5,-1.35) – pow(150,-1.35)); // normalization constant

for(i=0;i<N;i++) {
do {

X = rand();
m[i] = pow((-1.35 X / k) + 0.5-1.35),(-1.0/1.35));

} while(m[i]<0.5 || m[i]>150);
}

// then do something with m

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

