INTRODUCTIONMHD+COSMIC RAYSCR-DRIVEN DYNAMO MODELSGLOBAL DYNAMO MODELSCONCLUSIONS000000000000

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES

Michał Hanasz, Centre for Astronomy Nicolaus Copernicus University, Toruń

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS GLOBAL DYNAMO MODELS CONCLUSIONS 0 000 MAGNETIC FIELDS IN SPIRAL GALAXIES - RADIO OBSERVATIONS

A. Fletcher et al. 2008

M. Krause et al. 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Cosmic ray gas: an important ingredient continuously supplied by SN remnants (diffusive shock acceleration), lead to strong buoyancy effects.
- Kinetic energy of SN II explosion ~ 10^{51} erg \Rightarrow 10 % of $E_{SN} \rightarrow$ acceleration of cosmic rays charged particles (protons, electrons) accelerated in shocks to relativistic energies

(Hanasz & Lesch 2000, ApJ, 543, 235)

⇒ helical magnetic loops form on initially azimuthal magnetic field due to buoyancy of cosmic rays and the Coriolis force

- ⇒ small scale loops reconnect to form larger loops
- \Rightarrow generation of the large-scale radial m.f.
- \Rightarrow differential rotation: generation of the azimuthal m.f.

INTRODUCTION	MHD+COSMIC RAYS	CR-DRIVEN DYNAMO MODELS	GLOBAL DYNAMO MODELS	CONCLUSIONS		
	000					
SYSTEM OF EQUATIONS						

MHD EQUATIONS

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla)\mathbf{V} = -\frac{1}{\rho}\nabla(\rho + \rho_{CR}) + \mathbf{g} + \frac{1}{\rho}\nabla\left(\frac{B^2}{8\pi}\right) + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi\rho}$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$
$$\rho = c_s^2 \rho \qquad \text{(isoth.approx)}$$
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

CR TRANSPORT EQUATION Diffusion - advection approximation (eg. Schlickeiser & Lerche 1985, A&A, 151, 151)

$$\frac{\partial e_{\rm cr}}{\partial t} + \nabla (e_{\rm cr} \mathbf{V}) = -p_{\rm cr} \nabla \mathbf{V} + \nabla (\hat{K} \nabla e_{\rm cr})$$

$$+ CR \text{ sources (SN remnants)}$$
(1)

$$p_{\rm cr} = (\gamma_{\rm cr} - 1)e_{\rm cr} \tag{2}$$

Anisotropic diffusion of CRs

(Giaccalone & Jokipii 1998, Jokipii 1999, Ryu et al. 2003)

$$K_{ij} = K_{\perp} \delta_{ij} + (K_{\parallel} - K_{\perp}) n_i n_j, \quad n_i = B_i / B, \qquad (3)$$

$$K_{\parallel} = 3 \cdot 10^{28} \text{cm}^{-2} \text{s}^{-1}, \qquad K_{\perp} = (1 - 10)\% (K_{\parallel})$$

Original idea: Parker (1992)

Shearing box model:

Hanasz, Kowal, Otmianowska-Mazur & Lesch, 2004, ApJL, 605, 33 Hanasz, Otmianowska-Mazur, Kowal & Lesch, 2009, A&A, 498, 335

- the cosmic ray component: anisotropic diffusion-advection transport (Hanasz and Lesch 2003 numerical algorithm).
- localized sources of cosmic rays: supernova remnants, exploding randomly in the disk volume, SN shocks & thermal effects neglected
- resistivity of the ISM (see Hanasz, Otmianowska-Mazur and Lesch 2002, and Hanasz and Lesch 2003, Kowal, Hanasz & Otmianowska-Mazur 2003) ⇒ magnetic reconnection.
- differential rotation (+ Coriolis and tidal forces in local simulations)
- realistic vertical disk gravity following the model of ISM in the Milky Way by Ferriere (1998)

GALACTIC DISK MODEL

- Galactic gravitational potential: halo+bulge+disk (Allen & Santillan 1991)
- Interstellar gas: Global model of ISM for the Milky Way (Ferriere 1998)
- No magnetic field at t = 0
- SN rate \propto star formation rate \propto to gas column density: maximum of SN activity at $R_G = 4.5$ kpc , Gaussian distribution of SNe in z-coordinate (H = 200pc)
- 10% of of SN energy output is converted to CR energy.
- weak $(10^{-4}\mu G)$ dipolar, small scale $(r \sim 50 pc)$ randomly oriented magnetic field is supplied locally with every SN explosion for $t \leq 1$ Gyr
- resistive dissipation of small-scale magnetic fields.

Multifluid, parallel (MPI) magnetohydrodynamical code PIERNIK (Hanasz et al. 2008): http://piernik.astri.uni.torun.pl, GALERA, TASK Gdańsk, resol. 500x500x200 up to 1000x1000x200 grid cells, \simeq 100k-250k CPU h per experiment, 400-1600 CPU cores.

Gas density + wectors of gas velocity (left), a and cosmic ray energy density + vectors of magnetic field at t = 4Gyr . Hanasz, Woltański, Kowalik 2009, ApJ Letter 706L, 155

Colours: – azimuthal (toroidal) magnetic field component blue: $B_{\varphi} < 0$, red: $B_{\varphi} > 0$ Exploding magnetized stars spread weak irregular magnetic fields in the interstellar medium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Colours: – azimuthal (toroidal) magnetic field component blue: $B_{\omega} < 0$, red: $B_{\varphi} > 0$ Cosmic rays resulting from Supernova Explosions, and disk rotation cause amplification and ordering of magnetic field in the interstellar medium

INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS GLOBAL DYNAMO MODELS CONCLUSIONS 00 000</td

VERTICAL FIELDS

୍ର ୬ (୦

Amplification timescale of the large-scale magnetic field component:

 $T_{\langle B \rangle} = 270 \text{Myr} \simeq T_{rot}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Parker instability + resistivity

Hanasz & Lesch (1998)

INTRODUCTION	MHD+COSMIC RAYS	CR-DRIVEN DYNAMO MODELS	GLOBAL DYNAMO MODELS	CONCLUSIONS		
			000000000000000000000000000000000000000			
HOW IT WORKS ?						

Differential rotation

Runs: A1: $\eta = 0$, A2: $\eta = 1$, A3: $\eta = 10$, A4: $\eta = 100$, A5: $\eta = 1000$ Units: 1pc ²Myr ⁻¹ = $3 \cdot 10^{23}$ cm ²s⁻¹ The fastest magnetic field amplification for magn. diffusivity $\eta \simeq 3 \cdot 10^{25}$ cm ²s⁻¹

イロト 不得下 不同下 不同下

z [kpc]

10 y [kpc] -10^{-10} -10 -5 x [kpc] X-type structure in edge-on view

Synthetic radio-maps of the simulated galaxy reproduce the main features observed in real galaxies

Spiral structure of magnetic field in the disk plane

ヘロト ヘアト ヘヨト ヘ

3.1

INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS GLOBAL DYNAMO MODELS CONCLUSIONS 00 00 MAGNETIC FIELDS IN SPIRAL GALAXIES - RADIO OBSERVATIONS

A. Fletcher et al. 2008

M. Krause et al. 2008

GLOBAL DYNAMO MODELS CONCLUSIONS INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS BARRED GALAXY - ANALYTICAL POTENTIAL

Axisymmetric gravitational potential + elliptical bar

Colours: – azimuthal magnetic field component blue: $B_{\varphi} < 0$, red: $B_{\varphi} > 0$ - antisymmetry of the azimuthal m.f with respect to galactic midplane.

Kulpa-Dybel et al. 2011, ApJL, 733,L18

INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS GLOBAL DYNAMO MODELS CONCLUSIONS 00 000 0 BARRED GALAXY - ANALYTICAL POTENTIAL

Synthetic radio maps

Kulpa-Dybel et al. 2011, ApJL, 733,L18

Beck & Hoernes 1996, Beck 2011

イロト イポト イヨト イヨト

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

INTRODUCTION	MHD+COSMIC RAYS	CR-DRIVEN DYNAMO MODELS	GLOBAL DYNAMO MODELS	CONCLUSIONS
			000000000000000000000000000000000000000	
STARS + GAS				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

N-body simulations: VINE code (Wetzstein et al 2008)

Evolution of gas density and toroidal magnetic field in the gravitational field of N-body system

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Evolution of gas density and toroidal magnetic field in the gravitational field of N-body system

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Amplification of magnetic energy (red) and azim. magnetic flux (green)

э

- COSMIC RAY DYNAMICS LEADS TO A VERY EFFICIENT MAGNETIC FIELD AMPLIFICATION IN GALACTIC DISKS
- Amplification timescale ~ t_{rot} ⇒ growth of the large-scale magnetic field by several orders of magnitude, fast enough to expect ~ 1µG magnetic field in galaxies at z ~ 1÷2
- Dipolar small-scale magnetic fields supplied by exploding stars build up a large scale magnetic field ⇒ no need for seed fields of cosmological origin.
- Efficient regularization of the random magnetic field component.
- Growth of magnetic field, driven by SNe, far outside the star forming ring.
- Synthetic radio-maps resemble magnetic field structures in real galaxies.
- Magnetic field in models based on N-body simulations tend to converge to real galaxies.