Measurement of Polarization Angle in RM Synthesis

Michael Bell MPA

$$
\begin{aligned}
F(l, m, \phi) & =p I e^{2 i \chi_{0}} \\
\chi & =\phi \lambda^{2} \\
P\left(l, m, \lambda^{2}\right) & =\int d \phi p I e^{2 i \chi_{0}} e^{-2 i \phi \lambda^{2}}
\end{aligned}
$$

Signal as reconstructed using $\lambda^{2}>0$, No longer all real

From Frick et al. (2010)

NOTATION: $f(x)=F T n[F(k)] \rightarrow n$ dim. Fourier Transform of F is f
Some relevant properties of FTs
$\underline{\operatorname{If} F(k) \text { is real: }}$
$f(-x)=f *(x)$
$\operatorname{Re}[f(-x)]+i \operatorname{Im}[f(-x)]=\operatorname{Re}[f(x)]-i \operatorname{Im}[f(x)]$
i.e. $\operatorname{Re}(f)$ is symmetric \& $\operatorname{Im}(f)$ is anti-symmetric
$\underline{\text { If } F(k) \text { is real and symmetric: }}$
$f(x)$ is also real and symmetric

Signals as reconstructed assuming F is symmetric

Signal as reconstructed using $\lambda^{2}>0$

From Frick et al. (2010)

e.g. Faraday Caustics

Bell, Junklewitz, \& Enßlin, arXiv:1105.2693

