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e Imaging talk considered idealised set of
samples of visibility function
— How to form an image (gridding, weighting and FFT)
— How to deal with incomplete sampling of visibility

function (deconvolution: CLEAN)

e This talk is about how we prepare the data for
Imaging
— Editing to remove bad data
— Averaging to reduce volume of data
— Calibration

e As before, all steps essential
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Importance of calibration

e For radio interferometers, calibration is much more than
just setting an overall brightness scale

e Visibility samples come from different telescopes with
different receivers: will differ by 10-100%

« Visibility phases are almost completely scrambled by
the atmosphere and ionosphere

e FT of raw data usually unrecognisable

e Final image quality often limited by quality of calibration
and presence of bad data rather than deconvolution
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Importance of calibration
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Automation?
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e Should be a deterministic process ... should
use scripts (pipelines)

e Automatic editing?

— For strong, simple sources, should be possible to
recognise very discrepant amplitudes, especially for
Individual baselines in long track observation

— Editing and Calibration often iterative
— Weak sources: raw data looks like noise

e Automatic calibration
— Often possible, with good quality control

— Sometimes involves self-calibration to produce
Image of the calibrator source
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e V(u,v) < I(l,m)

» Observed visibilities, sm%IeT—Bgmn, single freq.

/‘[L7 — GZ]‘[L] - 6@] T nzk

Observed complex ‘

visibility on baseline

from telescope i to Complex calibration
factor for this baseline

Add|t|ve error
(correlator
offset)

Gij(t) = gi(t)g*;(t) = ai(t)a;(t)el?i =3 (t)

e Estimate a(t) and ¢(t) for each telescope
e This is the approach used by AIPS, difmap, MIRIAD

telescope j.
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Problems with simple approach

e Extend to cover frequency dependence
— See Beswick lecture

e Extend for polarised receivers and sources,
but not elegant or exact
— See Cawthorne lecture

e Can include simple terms which cannot be
factorised by telescope

e Does not show where calibration terms arise

e Not well suited for calibration terms which
vary with position on the sky
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Measurement equation
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Polarisation: signal vector, corrupted by Jones matrix
\7ijobs (J Vis ® ] ws*)\/ ideal
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- J contains many components:
e F = ionospheric Faraday rotation o o o
- T = tropospheric effects J — K B G D E
e P = parallactic angle | |
e E = antenna voltage pattern
e D = polarization leakage
e G = electronic gain
e B = bandpass response
e K = geometric compensation

e Order of terms follows signal path (right to left)

T F
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Measurement equation (2)
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e Developed by Hamaker, Bregman Sault
— Series of papers in A&A (1996->)

e Implemented in CASA (NRAO)
— Matrix details hidden
— Adopted by ALMA, (EVLA)

e MegTrees (Noordam, Smirnov, ASTRON)
— Important for WSRT,LOFAR, SKA

e See also NRAO Summer School lectures
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Effects to be calibrated
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e Telescope sensitivity: amplitude
— Gain
e Measure ‘single dish’ performance; gain depends on antenna size,
geometry, surface accuracy

e Antenna shape may deform with elevation
e Surface properties may change with time
e Pointing: direction dependent terms

— System temperature
e Receiver noise [Receiver gain does not matter]
» Sky noise: object, surrounding emission, atmosphere
e Scattering (rain); spillover (ground)
e Instrumental phase
— System timing; synthesisers and LO
— Major issue for VLBI
e Correlator delay,phase model
— Geometry, static atmosphere
e Atmospheric fluctuations
— Dry & wet components
— lonosphere
— Atmospheric opacity
e Correlator effects
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Calibration methods
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e Direct calibration

— Engineering knowledge of the system, requires frequent
characterisation of equipment, stability with time, or model of
variation with time

e May be a useful starting point
e May be essential for absolute measurements, eg CMB, establishing
standards
e Monitoring calibration
— Independent measurements of varying components, including
receiver systems and atmospheric effects during the observation

e Used in VLBI (see Reynolds lecture)
e Used at mm wavelengths (see Gueth lecture)
e Used for delay compensation in MERLIN, EVLA

e Astronomical calibration

— Use of calibrator sources whose visibility can be accurately
predicted and modeled. To calibrate varying components will
require frequent observations of a close calibrator source: Phase
Referencing

e Main technique for MERLIN, VLA, WSRT, GMRT, VLBI

e Self calibration
— lterative approach using the target source itself

— Only when target source is strong enough
e See Lobanov lecture
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Amplitude calibration
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e Correlation coefficient for point source
p () (5]

Where S;, ,= system equivalent flux density

- 2kTsys/ (Aeff)
T = TRx + T + TSpI” Tatm + .
Aeff eAq

g mcludes telescope optics (0.4-0.7), loss due to
surface accuracy, etc

n — 0.8 depends on ‘correlator efficiency’: digitisation
effects due to sampling, fringe rotation etc.

All terms except n, Ajneed to be determined and can vary
with time.
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Correlator phase model
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- Correlator predicts delay for a given baseline using ¢ = QTWD S
e Qutput phase should be zero for source at this position s.

e Need to include
— Atmospheric delay (troposphere and ionosphere)
— Relativistic and geometric effects
e Moving baseline (SR)

e Telescope geometry (phase centre = intersection of axes; many
telescope have an offset)

— Earth orientation effects (co-ordinate system for D)

e Polar wobble (—0.3 arcseconds or 15m, mostly 12 — 14month
seasonal components, hard to predict)

e Variations in rotation speed (UT1-UTC) — 1ms
e Correlators generally use predictions from IERS
— Changes in telescope position
e Tectonic motion (few cm/yr), tidal effects (—1 cm/day)

e Atmospheric delay is usually largest uncertainty.
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At the zenith...
— Dry air: L = 2.3(P/1000mb) m
e Easy to estimate from surface pressure

— Water vapour: L = 6.3W where W is total liquid water column — 0.5 —
5cm

e Very variable; hard to estimate from surface conditions
e Fluctuates on small scales
e Correlators generally used fixed or seasonal value
e Can now use GPS or Water Vapour Radiometers
e Strong variation with elevation [zenith angle z]
— Plane atmosphere: L(z) =L/cos(z)

— Zenith angles different for separated telescopes observing same
source: large effect at low elevation

— Real troposphere is stratified, variable & curved
— Range of ‘mapping functions’ L(z) developed
e Best (Vienna) now use numerical weather forecasting grids
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lonosphere

e Dispersive: t—v? worse at low frequencies
e — 10[v/GHZz]*2 m delay

— Dominates tropospheric delay for v < 4 GHz
e Varies by x100 day-night

— Large differential on long baselines
— Local time, latitude & elevation
— Strong diurnal signature

e Spatial fluctuations (travelling waves) on
scales of ~100km, timescale 20 min,
amplitude few % In electron density

e Not generally included in correlator model
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ct Baseline-based calibration
S e Observe point source, flux density S at tracking
g centre
Model: |Vij|=S, phase = zero for all i,j,t
setal ey =1V :1t)/5

|
arg(Gi;(t)) = arg (Vi; (1))

e Errors due to any real structure of calibrator
source transfer to target sources

— Need a very compact and stable source
e Assumes G constant between calibration and
target

— ldeally observations should be frequent and
calibrator source should be close
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Finding good calibrator sources
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e Bright radio sources are associated with active galactic
nuclei (AGN) is distant galaxies (typically z=0.7)
— Compact core (AGN) << 1 arcsec
— Extended jets and lobes >> 1 arcsec

e Core-dominated sources (Doppler boosted jets) are
compact but variable
— Often use a combination of sources (boostrapping)

— Use well established, slightly extended sources (3C286,
3C48) to calculate flux density of unresolved source

e MERLIN (50 mas resolution) uses a few Gigahertz
spectrum sources (0Q208, DA193, 2134+004): quite
compact and stable

e VLBI (—1-20 mas resolution): no unresolved sources



Radic Galaxy 3€296
VLA 20cm image
Copyright () NRAQ/AUL 1999
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Antenna-based calibration

Gij(t) = gi(t)g*;(t) = ai(t)a;(t)el?(=¢i ()

e Use same point source calibrator approach
e But factorise G per antenna

e Instrumental phase is arbitrary, so fix reference
antenna to have ¢;=0

e With 3 or more antennas, can solve for a and ¢

e Becomes progressively more over-determined
for larger number of antennas
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Advantages of antenna-based calibration
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— Antenna terms more accurately
estimated (higher SNR)

— Physical association with antennas
— Fewer terms to store, plot, inspect

— Can restrict to range of baselines
where FT of source is flat, and still
obtain solutions for all antennas

e Exclude longer baselines where
source partly resolved

e Exclude shortest baselines which see
extended structure
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Closure relations (1)

e For point source, at phase
centre

model phase = 0
observed phase on baseline ij
= 09,

e Closure phase for this triangle

defined as sum of baseline
phases closing the loop

e QObserved closure phase
= 010, + 0p-03 + O3-0,
=0

e Model closure phase = 0

=» Closure phase unaffected by
antenna-based errors (Jennison
1958)

Similar approach for amplitudes in
closure quadrilaterals

Model closure amplitude = 1 for
point source

For n antennas,

Y (n-1)(n-2)

closure triangles

Ratio of baselines:triangles
Is n/(n-2)
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Closure phase plots
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Closure quantities (2)

e Some early analysis techniques used closure quantities
directly (Rogers 1974) or an explicit constrain in
Imaging process

e Now implicit in antenna based calibration

e Plotting closure quantities is a very useful diagnostic,
iIndependent of calibration errors

— Check to see whether source has structure
— Fit between model and data

e Point symmetric object has zero closure phase
e Closure phase contain no information about position
e Can be noisy
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Closure Phase Plots
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Choice of reference antenna

1824

ot
v
(]
aw
§

e [For point source, antenna phase ¢; ~ ¢;,
e Sometimes used as initial value for
solution, especially in fringe fitting
— For VLBI often pick big antenna for
reference
e Plots of antenna phase vs time will all
show variation of ref antenna
— Good to pick antenna with slow
expected phase rates

= Ensure that reference antenna takes
part in range of baseline lengths (near
centre of array)

e Important for R-L delay calibration (see
Cawthorne lecture)
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e VLA calibration
procedure

e Use restricted range of
baseline lengths
(uvrange 1n CALIB)
for which point source
assumption is valid g

e Not very critical for
phase calibration

Resolved calibrator sources (1)
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Resolved calibrator sources(2)
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e Start with point source assumption
— Could use restricted uvrange

e Apply calibration
e Make image using IMAGR

e Use this as the MODEL for CALIB
— See demo next

e This iIs ‘self calibration’
— See Lobanov lecture, next
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Using a model in calibration
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= Divide observed visibilities by model
 Work with Vi

M
v

= Where VM=FT(IM) at u;;(t) v;; ()

e Then equivalent to unit point source at origin

e Usually use DFT of clean components from a CLEAN
map of object

— Often restricted to brighter, positive CC
= Can use gridded FFT interpolated to u;(t) v;; (t)
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Solution Iinterval for calibration
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e Observed visibilities divided by model point-
by-point

e Can then average all points to a single
complex number per baseline and solve for
antenna terms
— Maximum signal:noise

— Averages over real variations in antenna terms:
e Variations in telescope sensitivity with time or elevation
e Phase fluctuations due to atmosphere

— Often want to track these variations
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Phase referencing
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e This is the standard observing mode with VLA, MERLIN,
EVN,...

e Observe a nearby calibrator source for 1-5 minutes every
3-30 minutes

e Derive antenna gains (amplitudes and phases) for each
scan, interpolate in time to target source

e (Often use a resolved source

e Want a source as close as possible, within —~3 dg

— Minimize variation of phase with position in sky (isoplanatic
patch)

— Minimize change in elevation (sky noise, static troposphere)
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Choosing phase reference source
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e Proximity:
Ideally <4dg MERLIN <2dg VLBI

Reduces errors due to phase fluctuations, elevation
differences, geometric errors (astrometry)

e Strength

— Need SNR > 5 within 0.5-1 min in each pol. For each
baseline: 60 mJy for 16 MHz bandwidth, 1 min. solution
with 25-m antennas and 35K Tsys

e Structure

— Simpler the better. Distant, isolated antennas (Cambridge
in MERLIN, Shanghai in EVN) will be hard to calibrate if
source is strongly resolved

— Ensure SNR criterion still holds for these long baselines
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Lists of potential phase. ref sources
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e VLA Calibrator manual
http://www.vla.nrao.edu/astro/calib/manual/

e VLBA calibrator lists
http://www.vlba.nrao.edu/astro/calib/
Includes JVAS

e USNO database
http://rorf.usno.navy.mil/rrfid.shtml
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Recap

e Aim to find and apply complex calibration factors (gains) for
each telescope, so that if we observe point source S Jy, |V]|=
S and phases are all zero.

= Assume no direction-dependent effects, so that same cal
factors apply across the field of view

e Use a priori information where available
— Done by VLA on-line
— VLBI Tsys measurements
e Use a ‘point source calibrator’ to refine this
— MERLIN, VLA, WSRT
Solve for gains using measured visibilities
e Use a ‘phase reference source’ to follow variations with time
— MERLIN, VLA,VLBI
Closer,weaker, often resolved, observed every few minutes
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E e CALIB
é — Derives antenna-based solutions from observations of calibrator
S source(s)

— Works on (multi-source) uv data file
— Can assume point source, or use map as a model
— Generates SN table

e SETJY
— Set point source flux densities; formula for 3C286
e GETJY

— Compare solutions (SN tables) for 3C286 and other calibrators,
hence drive their flux densities

e« SNPLT
— Plots output SN table
 CLCAL

— Transfers, interpolates SN values to CL table
— Allows incremental calibration

e SPLIT
— Applies CL values to visibilities

e Most major tasks (IMAGR etc) will apply CL calibration as
required
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Controlling CALIB
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e Specify uv Tile (GETN, INNAME etc)
e Choose calibrator sources (CALSOUR)
— Can use multiple (point) sources
e Specify flux density (SMODEL or use GETJY/SETJY) OR
e Specifty model 1mage for CALSOUR

— GET2N, IN2N etc
— NCOMP specifies how many CCs to use in model

e Specifty UVRANGE

— Only important for resolved calibrators or where model does not
fit extended structure on short baselines

e Specify REFANT
e Choose what to solve for
— SOLMODE <“A&P” .. amplitude and phase
e Specify solution criteria
— APARM(1) = 4 .. min number of antennas

— APARM(7) 5 .. min SNR (try 3, 1f CALIB does not find enough
solutions
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Editing

e Hard to give general guidance

e Use QUACK to trim start and end of scans for
phase referencing observations

e Use UVPLT, VPLOT to examine data
e Use CLPLT to plot closure phases

e Use IBLED for interactive editing MERLIN,
VLBI

e Not worth chasing single discrepant 4c points

e For weak sources hard to tell even if antenna
IS on source — use phase ref source and flag
weak target source too.



The University of Manchester

Jodrell Bank
Observatory

Averaging

e Averaging only useful to reduce volume of
data, to speed processing and make plots
easier to inspect

e Calibration and Imaging perform their own
sums and averages: do not gain SNR.

e Averaging in time or across frequency
channels causes smearing of sources away
from centre of map and reduces field of view.
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Averaging
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e Frequency averaging:

— u,v measured in wavelengths. Changing frequency
correponds to radial motion in u,v plane. Image at
distance 0 is smeared by an amount 3 — (Av/v)(6/6,)
In radial direction. Loss in amplitude

R ~ 1/3(1+0.9p2).
e Time averaging
— For point at distance 6 from centre of map; phase

changes within 1/6 in uv plane, Baseline length D
covers toD/A in time t. Require t < 0.1/(w 6/6,)

e Eg 4k x 4k map: (6/6,) — 1000 at edge
t < 0.1*86400/(2n 1000) < 1.5s
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